meili 发表于 2022-10-27 16:02:48

已知An(an,bn)是曲线y=e^x上的点,a1=a,Sn是数列{an}的前n项和,且满足Sn^2=(3n^2)an+S(n-1)^2已知An(an,bn)是曲线y=e^x上的点,a1=a,Sn是数列{an}的前n项和,且满足Sn^2=3n^2*an+S(n-1)^2,an不等于0,n=2,3,4…(1)证明:数列{

<p>问题:已知An(an,bn)是曲线y=e^x上的点,a1=a,Sn是数列{an}的前n项和,且满足Sn^2=(3n^2)an+S(n-1)^2已知An(an,bn)是曲线y=e^x上的点,a1=a,Sn是数列{an}的前n项和,且满足Sn^2=3n^2*an+S(n-1)^2,an不等于0,n=2,3,4…(1)证明:数列{
<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">陈彦萼的回答:<div class="content-b">网友采纳  (1)证明:b(n+2)/bn=e^a(n+2)/e^an=e^要证明{b(n+2)/bn}为常数数列,只需证a(n+2)-an为常数;∵Sn^2=3n^2*an+S(n-1)^2∴Sn^2-S(n-1)^2==*an=3n^2*an∴Sn+S(n-1)=3n^2…...
页: [1]
查看完整版本: 已知An(an,bn)是曲线y=e^x上的点,a1=a,Sn是数列{an}的前n项和,且满足Sn^2=(3n^2)an+S(n-1)^2已知An(an,bn)是曲线y=e^x上的点,a1=a,Sn是数列{an}的前n项和,且满足Sn^2=3n^2*an+S(n-1)^2,an不等于0,n=2,3,4…(1)证明:数列{