【y^3y#39;#39;-1=0,微分方程通解】
<p>问题:【y^3y#39;#39;-1=0,微分方程通解】<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">芦进的回答:<div class="content-b">网友采纳 令y'=p(y),y''=(dp/dy)(dy/dx)=(dp/dy)p原方程化为:y^3*(dp/dy)p-1=0,分离变量得:pdp=dy/y^3两边积分得:1/2p^2=-(1/2)y^(-2),即p^2=-1/y^2+C1则(dy/dx)^2=C1-1/y^2dy/dx=√(C1-1/y^2)ydy/√(C1y^2-1)=dx两边积分...
页:
[1]