已知函数f(x)=2mx2-2(4-m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是()A.(0,2)B.(0,8)C.(2,8)D.(-∞,0)
<p>问题:已知函数f(x)=2mx2-2(4-m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是()A.(0,2)B.(0,8)C.(2,8)D.(-∞,0)<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">何积泰的回答:<div class="content-b">网友采纳 当m≤0时,当x接近+∞时,函数f(x)=2mx2-2(4-m)x+1与g(x)=mx均为负值,显然不成立当x=0时,因f(0)=1>0当m>0时,若-b2a=4-m2m≥0,即0<m≤4时结论显然成立;若-b2a=4-m2m<0,时只要△=4(4-m)2-8m=4(m-...
页:
[1]