设总体X的概率密度为:f(x,θ)=e的[-(x-θ)]次方,x≥θ;0,x
<p>问题:设总体X的概率密度为:f(x,θ)=e的[-(x-θ)]次方,x≥θ;0,x<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">杭柏林的回答:<div class="content-b">网友采纳 EX=∫(上+∞下θ)xf(x,θ)dx=∫(上+∞下θ)xe^[-(x-θ)]dx =-(xe^[-(x-θ)]|(上+∞下θ)-∫(上+∞下θ)e^[-(x-θ)]dx) =-θ-1=µ θ=-µ-1 θ^=- ̄X-1(X左边横线在X上方) 其中 ̄X=1/n∑(从1到n)Xi
页:
[1]