求下列微分方程满足所给初始条件的特解y#39;#39;=2yy#39;,x=0y=1,x=0y#39;=2
<p>问题:求下列微分方程满足所给初始条件的特解y#39;#39;=2yy#39;,x=0y=1,x=0y#39;=2<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">康晓予的回答:<div class="content-b">网友采纳 令y'=p,则y''=dy'/dx=dp/dy*dy/dx=pdp/dy 所以pdp/dy=2yp dp=2ydy p=y'=y^2+C1 令x=0:2=1+C1 C1=1 所以y'=y^2+1 dy/(y^2+1)=dx arctany=x+C2 令x=0:π/4=C2 所以arctany=x+π/4 y=tan(x+π/4)
页:
[1]