meili 发表于 2022-10-27 15:48:16

二元微分方程x#39;#39;(t)=a-ky(t)#39;y(t)#39;#39;=kx(t)#39;初值x(0)=0,y(0)=0,x#39;(0)=0,y#39;(0)=v.|t=0求x(t)=y(t)=

<p>问题:二元微分方程x#39;#39;(t)=a-ky(t)#39;y(t)#39;#39;=kx(t)#39;初值x(0)=0,y(0)=0,x#39;(0)=0,y#39;(0)=v.|t=0求x(t)=y(t)=
<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">李保生的回答:<div class="content-b">网友采纳  x=(2(a-kv0)Sin[(kt)/2]^2)/k^2,  y=(akt+(-a+kv0)Sin(kt))/k^2
页: [1]
查看完整版本: 二元微分方程x#39;#39;(t)=a-ky(t)#39;y(t)#39;#39;=kx(t)#39;初值x(0)=0,y(0)=0,x#39;(0)=0,y#39;(0)=v.|t=0求x(t)=y(t)=