求微分方程初值问题的解x(1+x^2)dy=(y+x^2*y+1)dx,x=1时y=-π/4
<p>问题:求微分方程初值问题的解x(1+x^2)dy=(y+x^2*y+1)dx,x=1时y=-π/4<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">刘林虎的回答:<div class="content-b">网友采纳 dy/dx=(y+x^2*y+1)/x(1+x^2) dy/dx-(1/x)y=1/x(1+x^2) y=cx+x∫(1/(x^2(1+x^2))) =cx+x∫(1/x^2-1/(1+x^2)) =cx+x(-1/x-arctan(x)) x=1时y=-π/4c=1 y=x-1-xarctan(x)
页:
[1]