设f(x)在x=0的某领域内二阶可导,且limx→0(sin3xx3+f(x)x2)=0,求f(0),f′(0),f″(0)及limx→0f(x)+3x2.
<p>问题:设f(x)在x=0的某领域内二阶可导,且limx→0(sin3xx3+f(x)x2)=0,求f(0),f′(0),f″(0)及limx→0f(x)+3x2.<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">范新弼的回答:<div class="content-b">网友采纳 因为:limx→0(sin3xx3+f(x)x2)=limx→0sin3x+xf(x)x3=limx→0sin3xx+f(x)x2=0, 所以:limx→0(sin3xx+f(x))=0. 又:f(x)在x=0的某领域内二阶可导, 所以:f(x),f′(x)在x=0连续, 从而:f(0)=-3. 由limx→0sin3xx+f(x)x2=0, 得:limx→0sin3xx−3+f(x)+3x2=0, 又易知:limx→03−sin3xxx2=limx→0sin3xx36=limx→0sin3xx38=limx→0f(x)x20=f(x)x21, 故:limx→0f(x)x23=f(x)x21, 从而:f′(0)=limx→0f(x)x26=limx→0f(x)x28=limx→0x•f(x)x23=0×f(x)x21=0, 将f(x)在x=0处泰勒展开,并由limx→0f(x)x23=f(x)x21得: limx→0limx→06f″(0)x2+0(x2)+3x2=f(x)x21, 计算得:limx→08f″(0)=
页:
[1]