已知y=f(x)是(0,+∞)上的可导函数,满足(x-1)[2f(x)+xf′(x)]amp;gt;0(x≠1)恒成立,f(1)=2,若曲线f(x)在点(1,2)处的切线为y=g(x),且g(a)=2023,则a等于()A.-500.5B.
<p>问题:已知y=f(x)是(0,+∞)上的可导函数,满足(x-1)amp;gt;0(x≠1)恒成立,f(1)=2,若曲线f(x)在点(1,2)处的切线为y=g(x),且g(a)=2023,则a等于()A.-500.5B.<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">马凤的回答:<div class="content-b">网友采纳 令F(x)=x2f(x), 由(x-1)>0(x≠1),可得 x>1时,2f(x)+xf′(x)>0即2xf(x)+x2f′(x)>0,即F(x)递增; 当0<x<1时,2f(x)+xf′(x)<0即2xf(x)+x2f′(x)<0,即F(x)递减. 即有x=1处为极值点,即为F′(1)=0,即有2f(1)+f′(1)=0, 由f(1)=2,可得f′(1)=-4, 曲线f(x)在点(1,2)处的切线为y-2=-4(x-1), 即有g(x)=6-4x, 由g(a)=2016,即有6-4a=2016,解得a=-502.5. 故选:C.
页:
[1]