以椭圆的右焦点F2(F1为左焦点)为圆心作一圆,使此圆过椭圆中心并交椭圆于M、N,若直线MF1是圆F2的切线,则椭圆的离心率是___.
<p>问题:以椭圆的右焦点F2(F1为左焦点)为圆心作一圆,使此圆过椭圆中心并交椭圆于M、N,若直线MF1是圆F2的切线,则椭圆的离心率是___.<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">傅荟璇的回答:<div class="content-b">网友采纳 由题意直线MF1是圆F2的切线,得MF1⊥MF2而圆F2的半径为椭圆的长半轴a,所以Rt△MF1F2中,MF2=OF=a,F1F2=2a∴sin∠MF1F2=12⇒∠MF1F2=30°∴MF1=3MF 2=3a再由椭圆的定义和离心率公式,得离心率为:e=F 1F...
页:
[1]