已知函数z=f(x,y)有二阶连续偏导数,且fx′(x,y)≠0,∂2z∂x2•∂2z∂y2-(∂2z∂x∂y)2=0,又设x=x(y,z)是由z=f(x,y)确定的函数,求∂2x∂y2•∂2x∂z2-(∂2x∂y∂z)2.
<p>问题:已知函数z=f(x,y)有二阶连续偏导数,且fx′(x,y)≠0,∂2z∂x2•∂2z∂y2-(∂2z∂x∂y)2=0,又设x=x(y,z)是由z=f(x,y)确定的函数,求∂2x∂y2•∂2x∂z2-(∂2x∂y∂z)2.<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">来玲的回答:<div class="content-b">网友采纳 将z=f(x,y)两边对y求偏导得0=f′x•∂x∂y+f′y,解得∂x∂y=−f′yf′x;同理,将z=f(x,y)两边对z求偏导得∂x∂z=1f′x.又∂2x∂y2=(f″yx•∂x∂y+f″y2)f′x−f′y(f″x2•∂x∂y+f″xy)...
页:
[1]