meili 发表于 2022-10-27 15:40:36

设x^2y+y^2x=x,求dy

<p>问题:设x^2y+y^2x=x,求dy
<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">唐艳平的回答:<div class="content-b">网友采纳  x^2y+y^2x=x  两边取导数:  2xy+x^2y'+2yy'x+y^2=1  (x^2+2xy)y'=1-y^2-2xy  y'=(1-y^2-2xy)/(x^2+2xy)  即:dy/dx=(1-y^2-2xy)/(x^2+2xy)  dy=(1-y^2-2xy)/(x^2+2xy)dx
页: [1]
查看完整版本: 设x^2y+y^2x=x,求dy