设x^2y+y^2x=x,求dy
<p>问题:设x^2y+y^2x=x,求dy<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">唐艳平的回答:<div class="content-b">网友采纳 x^2y+y^2x=x 两边取导数: 2xy+x^2y'+2yy'x+y^2=1 (x^2+2xy)y'=1-y^2-2xy y'=(1-y^2-2xy)/(x^2+2xy) 即:dy/dx=(1-y^2-2xy)/(x^2+2xy) dy=(1-y^2-2xy)/(x^2+2xy)dx
页:
[1]