如图,四边形ABCD内接于圆,AD,BC的延长线交于点E,F是BD延长线上任意一点,若AB=AC.(1)求证:DE平分∠CDF.(2)求证:AB2=AD•AE.
<p>问题:如图,四边形ABCD内接于圆,AD,BC的延长线交于点E,F是BD延长线上任意一点,若AB=AC.(1)求证:DE平分∠CDF.(2)求证:AB2=AD•AE.<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">牛英滔的回答:<div class="content-b">网友采纳 证明:(1)∵AB=AC, ∴∠ACB=∠ABC, ∵四边形ABCD内接于圆, ∴∠EDC=∠ABC, ∵∠ADB=∠ACB,∠ADB=∠FDE, ∴∠FDE=∠ACB=∠ABC, ∴∠FDE=∠EDC, 即DE平分∠CDF; (2)∵∠EDC+∠ADC=180°,∠ECA+∠ACB=180°,∠ACB=∠EDC, ∴∠ADC=∠ACE, 又∵∠BAC=∠CAD, ∴△ADC∽△ACE, ∴ADAC
页:
[1]