meili 发表于 2022-10-27 15:37:23

如图,四边形ABCD内接于圆,AD,BC的延长线交于点E,F是BD延长线上任意一点,若AB=AC.(1)求证:DE平分∠CDF.(2)求证:AB2=AD•AE.

<p>问题:如图,四边形ABCD内接于圆,AD,BC的延长线交于点E,F是BD延长线上任意一点,若AB=AC.(1)求证:DE平分∠CDF.(2)求证:AB2=AD•AE.
<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">牛英滔的回答:<div class="content-b">网友采纳  证明:(1)∵AB=AC,  ∴∠ACB=∠ABC,  ∵四边形ABCD内接于圆,  ∴∠EDC=∠ABC,  ∵∠ADB=∠ACB,∠ADB=∠FDE,  ∴∠FDE=∠ACB=∠ABC,  ∴∠FDE=∠EDC,  即DE平分∠CDF;  (2)∵∠EDC+∠ADC=180°,∠ECA+∠ACB=180°,∠ACB=∠EDC,  ∴∠ADC=∠ACE,  又∵∠BAC=∠CAD,  ∴△ADC∽△ACE,  ∴ADAC
页: [1]
查看完整版本: 如图,四边形ABCD内接于圆,AD,BC的延长线交于点E,F是BD延长线上任意一点,若AB=AC.(1)求证:DE平分∠CDF.(2)求证:AB2=AD•AE.