为什么在h趋向于0时,f(x+hx)的导数不一定等于f(x)的导数,如果相等要f(x)的导数连续
<p>问题:为什么在h趋向于0时,f(x+hx)的导数不一定等于f(x)的导数,如果相等要f(x)的导数连续<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">宋德俊的回答:<div class="content-b">网友采纳 f(x)在(-∞,+∞)可导 f(x)=(x-1)^2sin(1/(x-1)),x≠1 f(x)=0,x=1 x≠1,f'(x)=2(x-1)sin(1/(x-1))-cos(1/(x-1)), x=1,f'(x)=lim(f(1+h)-f(1))/h=limhsin(1/h)=0,h→0 =>当h→0时,2hsin(1/h)-cos(1/h)=f(1+h)≠f′(1)=0,导数不连续
页:
[1]