meili 发表于 2022-10-27 15:34:53

三角函数难题3.已知函数f(x)=4cosxsin(x+[π/6])-1(1)求f(x)的最小正周期;(2)求f(x)在区间[-π/6,π/4]上的最大值和最小值.4.已知函数f(x)=cos^2ωx+√3sinωxcosωx(ωgt;0)的最小正周期为π.(1)求f(2/3π)的值

<p>问题:三角函数难题3.已知函数f(x)=4cosxsin(x+[π/6])-1(1)求f(x)的最小正周期;(2)求f(x)在区间[-π/6,π/4]上的最大值和最小值.4.已知函数f(x)=cos^2ωx+√3sinωxcosωx(ωgt;0)的最小正周期为π.(1)求f(2/3π)的值
<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">高小新的回答:<div class="content-b">网友采纳  3.  (1)  f(x)=4cosx(sinxcosπ/6+cosxsinπ/6)-1  =2√3sinxcosx+2cos²x-1  =√3sin2x+cos2x  =2(sin2x*√3/2+cos2x*1/2)  =2(sin2xcosπ/6+cos2xsinπ/6)  =2sin(2x+π/6)  ∴f(x)的最小正周期:T=2π/2=π,  (2)∵-π/6≤x≤π/4∴-π/6≤2x+π/6≤2π/3  ∴2x+π/6=π/2时,f(x)取得最大值2  2x+π/6=-π/6时,f(x)取得最小值-1  4.  (1)f(x)=1/2(1+cos2ωx)+√3/2*sin2ωx  =1/2+√3/2*sin2ωx+1/2*cos2ωx  =1/2+sin(2ωx+π/6)  ∵f(x)的最小正周期为π,  ∴T=2π/2ω=π,解得ω=1  ∴f(x)=sin(2x+π/6)+1/2  ∴f(2π/3)=sin(4π/3+π/6)+1/2  =sin(3π/2)+1/2=1/2  (2)  由2kπ-π/2≤2x+π/6≤2kπ+π/2(k∈Z),  得:kπ-π/3≤x≤kπ+π/6,(k∈Z)  ∴函数f(x)的单调增区间为  (k∈Z)  由2kπ+π/2≤2x+π/6≤2kπ+3π/2(k∈Z),  得:kπ+π/6≤x≤kπ+2π/3(k∈Z)  函数f(x)的单调减区间为  (k∈Z)  由2x+π/6=kπ+π/2(k∈Z)  得x=kπ/2+π/6(k∈Z)  ∴f(x)图象的对称轴方程为  x=kπ/2+π/6(k∈Z)
页: [1]
查看完整版本: 三角函数难题3.已知函数f(x)=4cosxsin(x+[π/6])-1(1)求f(x)的最小正周期;(2)求f(x)在区间[-π/6,π/4]上的最大值和最小值.4.已知函数f(x)=cos^2ωx+√3sinωxcosωx(ωgt;0)的最小正周期为π.(1)求f(2/3π)的值