meili 发表于 2022-10-27 15:30:17

设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且∫(a,b)f(x)dx=f(b)(b-a).证明:在(a,b)内至少存在...设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且∫(a,b)f(x)dx=f(b)(b-a).证明:在(a,b)内至少存在一点ζ,

<p>问题:设函数f(x)在区间上连续,在(a,b)内可导,且∫(a,b)f(x)dx=f(b)(b-a).证明:在(a,b)内至少存在...设函数f(x)在区间上连续,在(a,b)内可导,且∫(a,b)f(x)dx=f(b)(b-a).证明:在(a,b)内至少存在一点ζ,
<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">韩林的回答:<div class="content-b">网友采纳  ∫(a,b)f(x)dx=F(b)-F(b)因此∫(a,b)f(x)dx=f(b)(b-a)/(b-a)=f(b)由拉克朗日定理,存在ξ使:/(b-a)=f(ξ)ξ∈(a,b)b>ξ>a=>f(ξ)=f(b)由l罗尔定理,存在ζ∈(ξ,b)使f′(ζ)=0ζ∈(ξ,b)=>ζ∈...
页: [1]
查看完整版本: 设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且∫(a,b)f(x)dx=f(b)(b-a).证明:在(a,b)内至少存在...设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且∫(a,b)f(x)dx=f(b)(b-a).证明:在(a,b)内至少存在一点ζ,