设函数y=F(x)由方程xsiny+ye^x=O确定求y对x的二阶导
<p>问题:设函数y=F(x)由方程xsiny+ye^x=O确定求y对x的二阶导<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">刘梅花的回答:<div class="content-b">网友采纳 隐函数的求导法 先一阶导,得siny+y'xcosy+y'e^x+ye^x=0解得y'=-(siny+ye^x)/(xcosy+e^x) 再二阶导,得2y'cosy-(y')^2xsiny+xy''cosy+y''e^x+2y'e^x+ye^x=0 解得y''=(x(y')^2siny-2y'cosy-2y'e^x-ye^x)/(xcosy+e^x) 再将一阶导函数代进去就可以了
页:
[1]