【f(x)在[0,1]具有二阶导数,f(x)的绝对值小于等于a,f(x)的二阶导数的绝对值小于等于b,a,b为非负常数求证:f(x)的一阶导数的绝对值小于等于2a+b/2】
<p>问题:【f(x)在具有二阶导数,f(x)的绝对值小于等于a,f(x)的二阶导数的绝对值小于等于b,a,b为非负常数求证:f(x)的一阶导数的绝对值小于等于2a+b/2】<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">宁爱军的回答:<div class="content-b">网友采纳 要用泰勒公式f(1)=f(x)+f'(x)(1-x)+1/2*f''(x0)(1-x)^2,x0介于1和x之间f(0)=f(x)+f'(x)(0-x)+1/2*f''(x1)(0-x)^2,x1介于0和x之间所以f(1)-f(0)=f'(x)+1/2*f''(x0)(1-x)^2-1/2*f''(x1)x^2所以|f'(x)|≤|f(1)|+|...
页:
[1]