设f(x)与g(x)可导,f^2(x)+g^2(x)≠0,求证函数y=根号下f^2(x)+g^2(x)可导
<p>问题:设f(x)与g(x)可导,f^2(x)+g^2(x)≠0,求证函数y=根号下f^2(x)+g^2(x)可导<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">富永滋的回答:<div class="content-b">网友采纳 △x=h △y/△x=[√(f^2(x+h)+g^2(x+h))-√(f^2(x)+g^2(x))]/h 分子有理化 △y/△x=[(f^2(x+h)+g^2(x+h))-(f^2(x)+g^2(x))] /(分子有理化) =[(f^2(x+h)-f^2(x))+(g^2(x+h)-g^2(x))] /(集项) =[(f(x+h)-f(x))(f(x+h)+f(x))/h+(g(x+h)-g(x))(g(x+h)+g(x))/h]* 1/[(√(f^2(x+h)+g^2(x+h))+√(f^2(x)+g^2(x))](平方差分解因式) f(x)可导,f’(x)存在, 且f(x)连续,故当h→0时,f(x+h)→f(x) 于是当h→0时, (f(x+h)-f(x))(f(x+h)+f(x))/h→2f’(x)f(x) 同理当h→0时, (g(x+h)-g(x))(g(x+h)+g(x))/h→2g’(x)g(x) 同理当h→0时, 1/[(√(f^2(x+h)+g^2(x+h))+√(f^2(x)+g^2(x))]→1/ (有意义,因为f^2(x)+g^2(x)≠0) 从而 (△x→0)lim(△y/△x)=/√(f^2(x)+g^2(x))
页:
[1]