设函数f(x)在闭区间【0.1】上连续,在【0.1】内可导,f(0)=0,f(1)=1,证明1.存在$属于(0.1)是f($)=1-$2.存在连个不同的点$,n属于(0.1)使f`(n)f`($)=1
<p>问题:设函数f(x)在闭区间【0.1】上连续,在【0.1】内可导,f(0)=0,f(1)=1,证明1.存在$属于(0.1)是f($)=1-$2.存在连个不同的点$,n属于(0.1)使f`(n)f`($)=1<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">马向国的回答:<div class="content-b">网友采纳 1 g(x)=f(x)+x-1 g(0)=-1,g(1)=1 必存在ξ∈(0,1),g(ξ)=0 即f(ξ)=1-ξ 2 存在ξ∈(0,1),f'(ξ)=f(1)-f(0)=1 存在η∈(0,1),g'(η)=f'(η)+1=g(1)-g(0)=2;即f'(η)=1 于是f'(ξ)f'(η)=1
页:
[1]