一道高数题设函数f(x)在[o,1]上具有二阶导数,具满足条件|f(x)|
<p>问题:一道高数题设函数f(x)在[o,1]上具有二阶导数,具满足条件|f(x)|<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">马元正的回答:<div class="content-b">网友采纳 f(0)=f(c)-f'(c)*c+f''(m)*c^2/2 f(1)=f(c)+f'(c)*(1-c)+f''(n)*(1-c)^2/2 两式相减,得 f'(c)=f(1)-f(0)-f''(m)*c^2/2+f''(n)*(1-c)^2/2 所以 |f'(c)|
页:
[1]