meili 发表于 2022-10-27 15:18:00

若函数f(x)在区间[0,a]上可导,且f(a)=0,证明在区间(0,a)内至少有一点ξ,使f(ξ)+ξf′(ξ)=0

<p>问题:若函数f(x)在区间上可导,且f(a)=0,证明在区间(0,a)内至少有一点ξ,使f(ξ)+ξf′(ξ)=0
<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">范立莉的回答:<div class="content-b">网友采纳  构造新函数g(x)=xf(x)  因为g(0)=g(a)=0  所以必定存在x  使得g'(x)=0
页: [1]
查看完整版本: 若函数f(x)在区间[0,a]上可导,且f(a)=0,证明在区间(0,a)内至少有一点ξ,使f(ξ)+ξf′(ξ)=0