meili 发表于 2022-10-27 15:17:18

设f(x)在区间(0,1)可导,且导函数f`(x)有界,证明级数∑(n从2到无穷)[f(1/n)-f(1/(n+1))]绝对收敛答案中)[f(1/n)-f(1/(n+1))=f`(ζ)(1/n-1/(n+1))=f`(ζ)*1/n(n+1),)绝对值f(1/n)-f(1/(n+1))≤M/n^2,这个M/n^2是怎

<p>问题:设f(x)在区间(0,1)可导,且导函数f`(x)有界,证明级数∑(n从2到无穷)绝对收敛答案中)[f(1/n)-f(1/(n+1))=f`(ζ)(1/n-1/(n+1))=f`(ζ)*1/n(n+1),)绝对值f(1/n)-f(1/(n+1))≤M/n^2,这个M/n^2是怎
<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">刘月明的回答:<div class="content-b">网友采纳  不是前面用了拉格朗日微分中值定理,就是那第一个等式.而第二个不等式则是用了连续函数的介值定理.f`(ζ)要小于f`(x)的最大值就是M.而1/n(n+1)小于1/n^2.由于1/n^2收敛.所以1/n(n+1)收敛.故绝对值f(1/n)-f(1/(n+1))收敛.则绝对收敛
页: [1]
查看完整版本: 设f(x)在区间(0,1)可导,且导函数f`(x)有界,证明级数∑(n从2到无穷)[f(1/n)-f(1/(n+1))]绝对收敛答案中)[f(1/n)-f(1/(n+1))=f`(ζ)(1/n-1/(n+1))=f`(ζ)*1/n(n+1),)绝对值f(1/n)-f(1/(n+1))≤M/n^2,这个M/n^2是怎