meili 发表于 2022-10-27 15:17:18

设f(x)在[0,1]上连续,在(0,1)内二阶可导,过点A(0,f(0))和点B(1,f(1))的直线相交于点c(c,f(c))其中0

<p>问题:设f(x)在上连续,在(0,1)内二阶可导,过点A(0,f(0))和点B(1,f(1))的直线相交于点c(c,f(c))其中0
<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">沈奕的回答:<div class="content-b">网友采纳  设过A,B的直线函数为y=g(x)则f(0)=g(0)f(c)=g(c)f(1)=g(1)由拉格朗日中值定理得:/(c-0)=f'(m)=/(c-0)=g'(x)0
页: [1]
查看完整版本: 设f(x)在[0,1]上连续,在(0,1)内二阶可导,过点A(0,f(0))和点B(1,f(1))的直线相交于点c(c,f(c))其中0