【设函数f(x)具有二阶导数,并满足f(x)=-f(-x),且f(x)=f(x+1).若f′(1)>0,则()A.f″(-5)≤f′(-5)≤f(-5)B.f(5)=f″(-5)<f′(-5)C.f′(-5)≤f(-5)≤f″(-5】
<p>问题:【设函数f(x)具有二阶导数,并满足f(x)=-f(-x),且f(x)=f(x+1).若f′(1)>0,则()A.f″(-5)≤f′(-5)≤f(-5)B.f(5)=f″(-5)<f′(-5)C.f′(-5)≤f(-5)≤f″(-5】<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">初福江的回答:<div class="content-b">网友采纳 由f(x)=f(x+1)知, f(x)是周期为1的周期函数,而可导的周期函数的导函数仍为周期函数, 因而f'(x),f''(x)均是周期为1的周期函数. 又f(x)为奇函数, 故 0=f(0)=f(-1)=f(-2)=…=f(-5), f'(1)=f'(0)=f'(-1)=f'(-2)=…=f'(-5)>0, 且f''(0)=f''(-1)=f''(-2)=…=f''(-5). 又因 f'(x)为偶函数,f''(x)为奇函数, 故f''(0)=0,因此f''(5)=0, 于是有 f(5)=f''(-5)<f'(-5). 故选:(B).
页:
[1]