已知函数f(x)=2x3-3(2+a2)x2+6(1+a2)x+1(a∈R).(Ⅰ)若函数f(x)在R上单调,求a的值;(Ⅱ)若函数f(x)在区间[0,2]上的最大值是5,求a的取值范围.
<p>问题:已知函数f(x)=2x3-3(2+a2)x2+6(1+a2)x+1(a∈R).(Ⅰ)若函数f(x)在R上单调,求a的值;(Ⅱ)若函数f(x)在区间上的最大值是5,求a的取值范围.<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">程志奇的回答:<div class="content-b">网友采纳 (Ⅰ)f′(x)=6x2-6(2+a2)x+6(1+a2)=6(x-1)(x-1-a2),因为函数f(x)在R上单调,所以1=1+a2,即a=0.(6分)(Ⅱ)因为1≤1+a2,所以{f(x)}max={f(1),f(2)}max={3a2+3,5}max=5,即3a2+3≤5,解此...
页:
[1]