【高三数列题、求、已知首项为1的数列{an}的前n项和Sn满足Sn+1/Sn=n+3/n+1求数列{an}的通项an】
<p>问题:【高三数列题、求、已知首项为1的数列{an}的前n项和Sn满足Sn+1/Sn=n+3/n+1求数列{an}的通项an】<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">蓝洪忠的回答:<div class="content-b">网友采纳 Sn+1/Sn=n+3/n+1a(n+1)/Sn+1=(n+3)/(n+1)a(n+1)/sn=2/(n+1)得sn=(n+1)a(n+1)/2sn-1=nan/2相减的an=(1/2)[(n+1)a(n+1)-nan]2an+nan=(n+1)a(n+1)(2+n)an=(n+1)a(n+1)a(n+1)/an=(n+2)/(n+1)an/a(n-1)=(n+1)/n……………...
页:
[1]