物理题天体运动两颗靠的很近的恒星称之为双星,这两颗星必须以一定的角速度绕两者连线上某一点转动才不至于万有引力的作用而吸引在一起,已知两颗星质量分别为m1,m2两颗星相距L,试求
<p>问题:物理题天体运动两颗靠的很近的恒星称之为双星,这两颗星必须以一定的角速度绕两者连线上某一点转动才不至于万有引力的作用而吸引在一起,已知两颗星质量分别为m1,m2两颗星相距L,试求<p>答案:↓↓↓<p class="nav-title mt10" style="border-top:1px solid #ccc;padding-top: 10px;">贺学锋的回答:<div class="content-b">网友采纳 设圆心距离m1、m2分别x1和x2 x1+x2=L.(1)式 两者间的万有引力 F=G*m1*m2*/L^2.(2)式 F同时是两个星体圆周运动的向心力 设它们的速度分别为v1和v2 m1*v1^2/x1=m2*v2^2/x2.(3)式 设它们的角速度为w. 这里需要明确,它们的角速度是相同的.因为它们是在相同来源的万有引力下绕共同的圆心做圆周运动. v1=x1*w v2=x2*w 这两个关系代入到(3)式中,消去w,得到: m1*x1=m2*x2.(4) (题外话:可以看到,这个式子与杠杆平衡方程一模一样.圆心所在位置其实就是m1和m2的质量中心.) (4)与(1)联立,容易算出 x1=*L x2=*L x1和x2即为两颗星的轨道半径. 下面求周期. F=G*m1*m2*/L^2=m1*v1^2/x1=m1*(v1/x1)^2*x1 周期T=2*Pi*x1/v1 =2*Pi*SQRT =2*Pi*SQRT{L^3/[G(m1+m2)} 这里Pi为圆周率,SQRT=SqureRoot表示开平方运算. 两颗星星的周期和角速度均相同.
页:
[1]