小学五年级奥数题答案:抽屉原理 标签:奥数杂题
平面上有A、B、C、D、E、F六个点,其中没有三点共线,每两点之间任意选用红线或蓝线连接,求证:不管怎样连接,至少存在一个三边同色的三角形。<p>答案与解析:</p><p>连彩线的方式很多,如果一 一画图验证结论,显然是不可取的.这个问题如果利用抽屉原理去解决,就不是难事了。</p><p>我们用虚线表示红色,用实线表示蓝色.从任意一点比如点A出发,要向B.C、D、E、F连5条线段.因为只有两种颜色,所以根据抽屉原理,至少有3条线段同色.不妨设AB、AD、AE三线同红色(如右图).如果B、D、E这三点之间所连的三条线段中有一条是红色的,则出现一个三边为红色的三角形.如果这三点之间所连线段都不是红色,那么就都是蓝色的.这样,三角形BDE就是一个蓝色的三角形.因此,不管如何连彩线,总可以找到一个三边同色的三角形。</p>
页:
[1]