meili 发表于 2022-10-21 20:58:24

小学五年级奥数题及答案解析:操作题 标签:奥数杂题

<p>对于任意一个自然数n,当n为奇数时,加上121;当n为偶数时,除以2。这算一次操作。现在对231连续进行这种操作,在操作过程中是否可能出现100?为什么?<p> <p> 解:231是11的倍数,操作只有两个,一个是加121,而121也是11的倍数,另一个操作是除以2(一个是11倍数的偶数的一半,仍然是11的倍数),这两个操作都无法改变得数仍然是11倍数的这一性质,即在运算过程中出现的数一定都是11的倍数,因为100不是11的倍数,所以在题目中定义的运算里是不可能出现100的。 </p> <p> 如果将以上题目的231改变为任意一个11的倍数,包括0(要先加121,即121)和11本身,那么得数中肯定不会有100,这个结论是可靠的。但如果将231改变为任意一个不是11的倍数的数,比如1、2、3、343甚至更大,只要不是11的倍数,就会出现100,比如1,会在第105步得到100;2会在第106步得到100;而34只用了16步: </p> <p> 第1 步:34 ÷2 = 17第2 步:17 + 121 = 138第3 步:138 ÷2 = 69第4 步:69 + 121 = 190 </p> <p> 第5 步:190 ÷2 = 95第6 步:95 + 121 = 216第7 步:216 ÷2 = 108第8 步:108 ÷2 = 54 </p> <p> 第9 步:54 ÷2 = 27第10 步:27 + 121 = 148第11 步:148 ÷2 = 74第12 步:74 ÷2 = 37 </p> <p> 第13 步:37 + 121 = 158第14 步:158 ÷2 = 79第15 步:79 + 121 = 200第16 步:200 ÷2 = 100 </p>
页: [1]
查看完整版本: 小学五年级奥数题及答案解析:操作题 标签:奥数杂题