五年级奥数难题:倍数问题. 标签:数的整除问题
<p>优学奥数难题以小学4-6年级的杯赛题为来源,试题挑选、答案详解准确性均经优学奥数名师鉴证;根据对历年杯赛真题的研究、总结及归纳,结合了赛题中的高频考点、难点、易错点、以及最近几年命题趋势所得;适合志在杯赛中夺取佳绩的学生。</p><p><strong><strong><strong>已知m,n,k为自然数,m≥n≥k, 是100的倍数,求m+n-k的最小值。</strong></strong></strong></p><p>>>点击查看沈丽娟老师介绍 </p><p>选题编辑:沈丽娟老师</p><p>毕业于华南师范大学数学与应用数学 (师范)专业,优学专职教师,中国数学奥林匹克二级教练员。在大学期间修读“竞赛数学”,成绩优异。对中小学奥数知识体系了解透彻,重难点把握到位。辅导的学生中多人获得“华杯赛”奖项。</p><p><strong>教学特色:</strong></p><p>1、语言生动幽默,十分有亲和力,易于学生接受。2、拥有很强的数学功底,同时善于解题和总结。3、上课思路清晰、讲解透彻,注重知识及思维的发生、发展过程,深入浅出进行引导,善于联系学生的生活经验为学生构建形象生动的情境,帮助学生理解题目。</p><p><strong>老师教你解难题-试题详解</strong></p><p>首先注意100=22×52</p><p>如果,n=k,那么2m是100的倍数,因而是5的倍数,这是不可能的,所以n-k≥1</p><p>2m十2n-2k=2k(2m-k+2n-k-1)被22整除,所以k≥2</p><p>设a=m-k,b=n-k,则a≥b.而且都是正整数</p><p>2a+2b-1被52整除,要求a+b+k=m+n-k的最小值,</p><p>不难看出:210+21-1=2023</p><p>被25整除,所以a+b+k的最小值≤1O+1十2=13</p><p>而且在a=10,b=1,k=2时,上式等号成立</p><p>还需证明在a+b≤10时,2a+2b-1不可能被52整除</p><p>列表如下:</p><p><table border="1" cellpadding="0" cellspacing="0" style="border-right: medium none; border-top: medium none; border-left: medium none; width: 426.1pt; border-bottom: medium none; border-collapse: collapse" width="568"><tbody><tr style="height: 19.2pt"><td style="border-right: black 1pt solid; padding-right: 5.4pt; border-top: black 1pt solid; padding-left: 5.4pt; padding-bottom: 0cm; border-left: black 1pt solid; width: 40.85pt; padding-top: 0cm; border-bottom: black 1pt solid; height: 19.2pt; background-color: transparent" valign="top" width="54"> a</td><td style="border-right: black 1pt solid; padding-right: 5.4pt; border-top: black 1pt solid; padding-left: 5.4pt; border-left-color: rgb(212,208,200); padding-bottom: 0cm; width: 42.55pt; padding-top: 0cm; border-bottom: black 1pt solid; height: 19.2pt; background-color: transparent" valign="top" width="57"> 9</td><td style="border-right: black 1pt solid; padding-right: 5.4pt; border-top: black 1pt solid; padding-left: 5.4pt; border-left-color: rgb(212,208,200); padding-bottom: 0cm; width: 49.6pt; padding-top: 0cm; border-bottom: black 1pt solid; height: 19.2pt; background-color: transparent" valign="top" width="66"> 8</td><td style="border-right: black 1pt solid; padding-right: 5.4pt; border-top: black 1pt solid; padding-left: 5.4pt; border-left-color: rgb(212,208,200); padding-bottom: 0cm; width: 63.8pt; padding-top: 0cm; border-bottom: black 1pt solid; height: 19.2pt; background-color: transparent" valign="top" width="85"> 7</td><td style="border-right: black 1pt solid; padding-right: 5.4pt; border-top: black 1pt solid; padding-left: 5.4pt; border-left-color: rgb(212,208,200); padding-bottom: 0cm; width: 70.85pt; padding-top: 0cm; border-bottom: black 1pt solid; height: 19.2pt; background-color: transparent" valign="top" width="94"> 6</td><td style="border-right: black 1pt solid; padding-right: 5.4pt; border-top: black 1pt solid; padding-left: 5.4pt; border-left-color: rgb(212,208,200); padding-bottom: 0cm; width: 3cm; padding-top: 0cm; border-bottom: black 1pt solid; height: 19.2pt; background-color: transparent" valign="top" width="113"> 5</td><td style="border-right: black 1pt solid; padding-right: 5.4pt; border-top: black 1pt solid; padding-left: 5.4pt; border-left-color: rgb(212,208,200); padding-bottom: 0cm; width: 73.4pt; padding-top: 0cm; border-bottom: black 1pt solid; height: 19.2pt; background-color: transparent" valign="top" width="98"> 4</td></tr><tr style="height: 13.05pt"><td style="border-right: black 1pt solid; padding-right: 5.4pt; padding-left: 5.4pt; padding-bottom: 0cm; border-left: black 1pt solid; width: 40.85pt; border-top-color: rgb(212,208,200); padding-top: 0cm; border-bottom: black 1pt solid; height: 13.05pt; background-color: transparent" valign="top" width="54"> b</td><td style="border-right: black 1pt solid; padding-right: 5.4pt; padding-left: 5.4pt; border-left-color: rgb(212,208,200); padding-bottom: 0cm; width: 42.55pt; border-top-color: rgb(212,208,200); padding-top: 0cm; border-bottom: black 1pt solid; height: 13.05pt; background-color: transparent" valign="top" width="57"> 1</td><td style="border-right: black 1pt solid; padding-right: 5.4pt; padding-left: 5.4pt; border-left-color: rgb(212,208,200); padding-bottom: 0cm; width: 49.6pt; border-top-color: rgb(212,208,200); padding-top: 0cm; border-bottom: black 1pt solid; height: 13.05pt; background-color: transparent" valign="top" width="66"> 1,2</td><td style="border-right: black 1pt solid; padding-right: 5.4pt; padding-left: 5.4pt; border-left-color: rgb(212,208,200); padding-bottom: 0cm; width: 63.8pt; border-top-color: rgb(212,208,200); padding-top: 0cm; border-bottom: black 1pt solid; height: 13.05pt; background-color: transparent" valign="top" width="85"> 1,2,3</td><td style="border-right: black 1pt solid; padding-right: 5.4pt; padding-left: 5.4pt; border-left-color: rgb(212,208,200); padding-bottom: 0cm; width: 70.85pt; border-top-color: rgb(212,208,200); padding-top: 0cm; border-bottom: black 1pt solid; height: 13.05pt; background-color: transparent" valign="top" width="94"> 1,2,3,4,</td><td style="border-right: black 1pt solid; padding-right: 5.4pt; padding-left: 5.4pt; border-left-color: rgb(212,208,200); padding-bottom: 0cm; width: 3cm; border-top-color: rgb(212,208,200); padding-top: 0cm; border-bottom: black 1pt solid; height: 13.05pt; background-color: transparent" valign="top" width="113"> 1,2,3,4,5</td><td style="border-right: black 1pt solid; padding-right: 5.4pt; padding-left: 5.4pt; border-left-color: rgb(212,208,200); padding-bottom: 0cm; width: 73.4pt; border-top-color: rgb(212,208,200); padding-top: 0cm; border-bottom: black 1pt solid; height: 13.05pt; background-color: transparent" valign="top" width="98"> 1,2,3,4</td></tr></tbody></table>a≤3时,2a+2b-1<8+8=16不被52整除.其它表中情况,不难逐一检验,均不满足2a+2b-1被25整除的要求</p><p>因此a+b+k即m十n-k的最小值是13.</p><p>更多奥数练习 >></p><p> 天天练[高级难度练习](试题) | 天天练[高级难度练习](答案) | 每日一练 | 每日一练答案</p><p> 天天练[中级难度练习](试题) | 天天练[中级难度练习](答案) | 名师详解个年级奥数难题</p>
页:
[1]