meili 发表于 2022-10-21 18:36:00

奇偶分析习题18 标签:奇偶分析

<p>5.能否将1至25这25个自然数分成若干组,使得每一组中的最大数都等于组内其余各数的和?</p><p>6.在象棋比赛中,胜者得1分,败者扣1分,若为平局,则双方各得0分。今有若干个学生进行比赛,每两人都赛一局。现知,其中有一位学生共得7分,另一位学生共得20分,试说明,在比赛过程中至少有过一次平局。</p><p>7.在黑板上写上1,2,…,909,只要黑板上还有两个或两个以上的数就擦去其中的任意两个数a,b,并写上a-b(其中a≥b)。问:最后黑板上剩下的是奇数还是偶数?</p><p>8.设a1,a2,…,a64是自然数1,2,…,64的任一排列,令b1=a1-a2,b2=a3-a4,…,b32=a63-a64;</p><p>c1=b1-b2,c2=b3-b4,…,c16=b31-b32;</p><p>d1=c1-c2,d2=c3-c4,…,d8=c15-c16;</p><p>……</p><p>这样一直做下去,最后得到的一个整数是奇数还是偶数?</p><p><strong>答案:</strong></p><p>5.不能。提示:仿例3。</p><p>6.证:设得7分的学生胜了x1局,败了y1局,得 20分的学生胜了x2局,败了y2局。由得分情况知:</p><p>x1-y1=7,x2-y2=20。</p><p>如果比赛过程中无平局出现,那么由每人比赛的场次相同可得x1+y1=x2+y2,即x1+y1+x2+y2是偶数。另一方面,由x1-y1=7知x1+y2为奇数,由x2-y2=20知x2+y2为偶数,推知x1+y1+x2+y2为奇数。这便出现矛盾,所以比赛过程中至少有一次平局。</p><p>7.奇数。解:黑板上所有数的和S=1+2+…+909是一个奇数,每操作一次,总和S减少了a+b-(a-b)=2b,这是一个偶数,说明总和S的奇偶性不变。由于开始时S是奇数,因此终止时S仍是一个奇数。</p><p>8.偶数。</p><p>解:我们知道,对于整数a与b,a+b与a-b的奇偶性相同,由此可知,上述计算的第二步中,32个数</p><p>-a3a63a2,+a+</p>
页: [1]
查看完整版本: 奇偶分析习题18 标签:奇偶分析