meili 发表于 2022-10-18 19:25:06

实例解析GMAT数学求通项问题

<p>  <span word="GMAT">GMAT</span>考试大家对于数学的复习还是比较顺利的,但是呢我们知道<span word="GMAT">GMAT</span>数学也是有难题的。求通项是难题里出现次数比较多的,很多人对此不是特别的了解,小编下面就详细的给大家分享一些做通项题的<span word="GMAT">GMAT</span>考试技巧:</p><p>  <span word="GMAT">GMAT</span>数学简便方法一:</p><p>  看到过一堆堆问通项如何求的帖子啦,这里说一个一招搞定的做法:</p><p>  通项<span word="S">S</span>,形式设为<span word="S">S</span>=<span word="Am">Am</span>+<span word="B">B</span>,一个乘法因式加一个常量</p><p>  系数<span word="A">A</span>必为两小通项因式系数的最小公倍数</p><p>  常量<span word="B">B</span>应该是两个小通项相等时的最小数,也就是最小值的<span word="S">S</span></p><p>  例题:4-<span word="JJ">JJ</span>78.<span word="ds">ds</span>某数除7余3,除4余2,求值。</p><p>  解:设通项<span word="S">S</span>=<span word="Am">Am</span>+<span word="B">B</span>。由题目可知,必同时满足<span word="S">S</span>=7<span word="a">a</span>+3=4<span word="b">b</span>+2</p><p>  <span word="A">A</span>同时可被7和4整除,为28</p><p>  <span word="B">B</span>为7<span word="a">a</span>+3=4<span word="b">b</span>+2的最小值,为10</p><p>  所以<span word="S">S</span>=28<span word="m">m</span>+10</p><p>  <span word="GMAT">GMAT</span>考试数学简便方法二:</p><p>  129 <span word="DS">DS</span></p><p>  <span word="x">x</span> 除8余几?</p><p>  <span word="x">x</span>除12余5</p><p>  <span word="x">x</span>除18余11</p><p>   <span word="E">E</span></p><p>  条件1,令<span word="x">x</span>=12<span word="m">m</span>+5, <span word="m">m</span>=8<span word="k">k</span>,8<span word="k">k</span>+1,8<span word="k">k</span>+7</p><p>  <span word="hang">hang</span>13:由1,<span word="X">X</span>=5时候除8余5,<span word="X">X</span>=17时候除8余1,不确定</p><p>  由2,<span word="X">X</span>=11时候除8余3,<span word="X">X</span>=29时候除8余5,不确定</p>
页: [1]
查看完整版本: 实例解析GMAT数学求通项问题