GRE数学考生回忆(1)
<p> <span word="GRE">GRE</span>机经是很有效的<span word="GRE">GRE</span>备考资料,下面为大家讨论了一些新<span word="GRE">GRE</span>数学机经,一起来看一下吧。</p><p> 1.记得有一道计算两地时差的题,已知在<span word="New">New</span> <span word="York">York</span> <span word="city">city</span>在某日<span word="noon">noon</span>时,<span word="TOKYO">TOKYO</span>是几点,问在另外一个<span word="NY">NY</span>时间,<span word="TOKYO">TOKYO</span>是几点?</p><p> 补充:说当<span word="newyork">newyork</span>是6月1号<span word="noon">noon</span>的时候,<span word="tokyo">tokyo</span>是6月2号1:00<span word="am">am</span>,问当<span word="tokyo">tokyo</span>是6月2号5:00<span word="pm">pm</span>的时候,问<span word="newyork">newyork</span>是什么时候?我选是6月2日4:00<span word="am">am</span>,是<span word="D">D</span>吧,当时理解<span word="noon">noon</span>应该是中午12点吧!</p><p> 两地时差13个小时, <span word="noon">noon</span> = 12:00<span word="am">am</span></p><p> 2.如果集合<span word="N">N</span> 表示2^10 的所有因子,那么从里面选出<span word="P">P</span>,<span word="Q">Q</span>,<span word="R">R</span>,三个数的乘积,不同的情况有多少种? 因子有2^0,2^1,2^2....</p><p> 选项 25,28,29,30,31</p><p> 解释:就是以3为首,27为尾 ,公差为1的等差数列 2^<span word="n">n</span> 2^<span word="m">m</span> = 2^</p><p> 集合<span word="N">N</span> = { 2^0, 2^1, 2^2........ 2^10 } 共11个因子</p><p> 三个数乘积即是2^ 其中<span word="P">P</span>、<span word="Q">Q</span>、<span word="R">R</span>属于 考虑<span word="P">P</span>+<span word="Q">Q</span>+<span word="R">R</span>的范围下限是0+1+2=3;上限是8+9+10=27; 3到27之间共有25个取值</p><p> 3.有一个<span word="circle">circle</span>,被 <span word="unoverlap">unoverlap</span>的弧分成了8分,每个弧对应的圆心角分别是10度,20度,30度。。一直到80度,然后把每段弧的两个端点连起来,形成一个八边形,问这个八边形的最大的内角可能是多少度? <span word="A">A</span>. 150 <span word="B">B</span>. 155 <span word="C">C</span>. 160 <span word="D">D</span>. 165 <span word="E">E</span>. 170 180-10 /2=85 180-20 /2=80 注意:此版本前提是该八边形是内切八边形</p>
页:
[1]