GRE数学6大知识点详细解读
<p> 那些是<span word="GRE">GRE</span>数学需要考到的知识呢?对于这些知识,主要讲的是什么样的定律或者需要怎么准备呢?下面这篇文章将为大家解读<span word="GRE">GRE</span>数学的这些知识点,以及准备这些知识点是需要什么样的书籍。</p><p> 1.离散数学:命题逻辑,图论初步,集合论。</p><p> 参考书:<span word="J">J</span>. <span word="A">A</span>. <span word="Bondy">Bondy</span> <span word="and">and</span> <span word="U">U</span>.<span word="S">S</span>.<span word="R">R</span>. <span word="Murty">Murty</span>,<span word="Graph">Graph</span> <span word="theory">theory</span> <span word="with">with</span> <span word="applications">applications</span></p><p> 说明:逻辑的题目比较简单,也就是命题逻辑的基本运算,最多再加上真值表,随便找一本离散数学的书看看基本概念就行了。集合论的题目也比较简单。不过由于系里面没有开图论的课,所以大家还是好好看书,<span word="Bondy">Bondy</span>这本书看看第一章就行了。</p><p> 2.数值分析:高斯迭代法,插值法等基本运算法则。</p><p> 参考书:李庆扬等的《数值计算原理》</p><p> 3.实变函数:可数性概念,可测,可积的概念,度量空间,内积等概念。</p><p> 说明:以<span word="Cracking">Cracking</span> <span word="the">the</span> <span word="GRE">GRE</span> <span word="Math">Math</span> <span word="Test">Test</span>相关章节为主。</p><p> 4.拓扑学:邻域系,可数性公理,紧集的概念,基本拓扑性质。</p><p> 参考书:<span word="J">J</span>. <span word="R">R</span>. <span word="Munkres">Munkres</span>, <span word="Topology">Topology</span></p><p> 说明:重点,近几年的分量越来越大。以<span word="Cracking">Cracking</span> <span word="the">the</span> <span word="GRE">GRE</span> <span word="Math">Math</span> <span word="Test">Test</span>相关章节为主,不过据说考过<span word="foundamental">foundamental</span> <span word="group">group</span>,大家还是好好看看书。</p>
页:
[1]