GRE数学核心知识点归纳
<p> 离散数学</p><p> 命题逻辑,图论初步,集合论。</p><p> 参考书:<span word="J">J</span>. <span word="A">A</span>. <span word="Bondy">Bondy</span> <span word="and">and</span> <span word="U">U</span>.<span word="S">S</span>.<span word="R">R</span>. <span word="Murty">Murty</span>,<span word="Graph">Graph</span> <span word="theory">theory</span> <span word="with">with</span> <span word="applications">applications</span></p><p> 说明:逻辑的题目比较简单,也就是命题逻辑的基本运算,最多再加上真值表,随便找一本离散数学的书看看基本概念就行了。集合论的题目也比较简单。不过由于系里面没有开图论的课,所以大家还是好好看书,<span word="Bondy">Bondy</span>这本书看看第一章就行了。</p><p> 数值分析</p><p> 高斯迭代法,插值法等基本运算法则。</p><p> 参考书:李庆扬等的《数值计算原理》</p><p> 说明:内容很少,我考试的时候没见过。</p><p> 实变函数</p><p> 可数性概念,可测,可积的概念,度量空间,内积等概念。</p><p> 说明:以<span word="Cracking">Cracking</span> <span word="the">the</span> <span word="GRE">GRE</span> <span word="Math">Math</span> <span word="Test">Test</span>相关章节为主。</p><p> 拓扑学</p><p> 邻域系,可数性公理,紧集的概念,基本拓扑性质。</p><p> 参考书:<span word="J">J</span>. <span word="R">R</span>. <span word="Munkres">Munkres</span>, <span word="Topology">Topology</span></p><p> 说明:重点,近几年的分量越来越大。以<span word="Cracking">Cracking</span> <span word="the">the</span> <span word="GRE">GRE</span> <span word="Math">Math</span> <span word="Test">Test</span>相关章节为主,不过据说考过<span word="foundamental">foundamental</span> <span word="group">group</span>,大家还是好好看看书。</p><p> 复变函数</p><p> 基本概念,解析性,柯西积分定理,<span word="TaylorLaurent">TaylorLaurent</span>展式,保角变换,留数定理</p>
页:
[1]