meili 发表于 2022-10-14 16:27:32

新人教版小学五年级下册数学第三单元《探索图形》教案教学设计

<p>探 索 图 形</p><p>探索图形规律</p><p>教材第44页的内容。</p><p>1. 借助给正方体涂色的问题,通过实际操作、演示、联想等形式,发现小正方体涂色和位置规律。</p><p>2. 在探究规律的过程中,经历从特殊到一般的归纳过程,获得一些研究数学问题的方法和经验。</p><p>3. 让学生应用发现的规律解决一些简单的实际问题,培养学生的合作能力、空间想象能力和思维能力。</p><p>重难点:发现小正方体涂色和位置规律。</p><p>小正方体若干。</p><p>课件出示,展开联想。</p><p>师出示一个魔方)看到这个小方块你想到什么?</p><p>师:几个小正方体能够拼成稍大的正方体吗?为什么?</p><p>师:如果把这样的正方体表面全部涂上颜色,请闭上眼睛想一下,它们涂色情况怎样?</p><p>(学生互相交流)</p><p>师:涂色小正方体的个数以及它所在的位置是有一定规律的,这节课我们就来研究表面涂色的正方体。</p><p>板书:探索图形。</p><p>【设计意图:从学生的实际生活出发,与数学相结合,激发学生的学习兴趣】</p><p>活动一:出示由8个小正方体拼成的大正方体,研究三面涂色的有几个,两面涂色的有几个,一面涂色的有几个,分别在什么位置?</p><p>制定研究方案:对于这个问题,你们打算怎样研究?</p><p>生:我们把问题用列表的方式表示出来。看看每类小正方体都在什么位置,能否找到规律。</p><p>学生组成研究小组制定研究方案,全班交流。</p><p>汇报:三面涂色的块数是8块,两面涂色的块数是0块,一面涂色的块数是0块,没有涂色的块数是0。</p><p>活动二:出示由27个小正方体拼成的大正方体,研究三面涂色的有几个,两面涂色的有几个,一面涂色的有几个,分别在什么位置?</p><p>学生组成研究小组,全班交流。</p><p>汇报:三面涂色的块数是8块,两面涂色的块数是12块,一面涂色的块数是6块,没有涂色的块数是1。</p><p>活动三:出示由64个小正方体拼成的大正方体,研究三面涂色的有几个,两面涂色的有几个,一面涂色的有几个,分别在什么位置?</p><p>学生组成研究小组,全班交流。</p><p>汇报:三面涂色的块数是8块,两面涂色的块数是24块,一面涂色的块数是24块,没有涂色的块数是8。</p><p>小组汇报,根据汇报数据完成表格:</p><p>三面涂色的块数 两面涂色的块数 一面涂色的块数 没有涂色的块数</p><p>① 8 0 0 0</p><p>② 8 12 6 1</p><p>③ 8 24 24 8</p><p>师小结:看来几面涂色和位置与大正方体的顶点、棱、面有关系。那么几面涂色和位置与大正方体的顶点、棱、面到底有什么关系呢?(学生思考,小组讨论)</p><p>试着运用你找到的规律写出棱长是5的大正方体的涂色情况,棱长是6的大正方体的涂色情况。棱长是n的呢?</p><p>【设计意图:引导学生分析与思考,把学生的各次活动得到的感性认识加以适当提升,启发学生进一步思考,使学生在自主探索的基础上发现并总结规律,提高了学生的概括能力】</p><p>1. 只有位于正方体八个角上的那些小正方体是三面涂色,也就是说三面涂色的小正方体的块数就等于正方体的顶点数,有8块。</p><p>2. 两面涂色的那些小正方体,位于正方体的两个面的交界处,但又不在正方体的顶点处。因此,只需先确定正方体的某条棱上出现两面涂色的小正方体的块数,而正方体有12条棱,然后乘12就可以求得两面涂色的小正方体的块数。</p><p>3. 一个面涂色的小正方体位于正方体每个面的中心部位,既不在正方体的顶点处,也不在棱上。因此,只需要确定正方体的某一个面上出现的一面涂色小正方体的块数,然后乘6就可以得出一面涂色的小正方体的块数。</p><p>4. 最后用总块数-三面涂色的块数-两面涂色的块数-一面涂色的块数=不涂颜色小正方体的块数。</p><p>探 索 图 形</p><p>对于一个n×n×n的正方体,其涂色情况如下 :</p><p>三面涂色的:8个</p><p>两面涂色的n-2)×12个</p><p>一面涂色的:(n-2)×(n-2)×6个</p><p>各面没涂色的:总的个数减去上面三类的总个数</p><p>A类</p><p>一个棱长为3厘米,在其表面涂满红漆,然后切成棱长都是1厘米的小正方体,那么三面、两面、一面涂有红漆各有多少个?六面都没红色的有多少个?</p><p>B类</p><p>把若干个相同的小正方体堆成一个大的正方体,然后在大正方体的表面涂上颜色,已知两面被涂上颜色的有36个,那么这些小正方体一共有多少个?</p><p>课堂作业新设计</p><p>A类:</p><p>8个12个6个1个</p><p>B类:</p><p>125个</p><p></p>
页: [1]
查看完整版本: 新人教版小学五年级下册数学第三单元《探索图形》教案教学设计