meili 发表于 2022-10-14 16:23:49

高考数学重点题型解析2023

<p>高考是每个人一生中都要经历的一次至关重要的一次考试,要考好高考,就一定要好好复习。数学网编辑为您准备了高考数学重点题型,对你有帮助吗?</p><p>函数是每年高考的热点,而抽象函数性质的运用又是函数的难点之一。抽象函数是指没有给出具体的函数解析式或图像,但给出了函数满足的一部分性质或运算法则。此类函数试题既能全面地考查学生对函数概念的理解及性质的代数推理和论证能力,又能综合考查学生对数学符号语言的理解和接受能力,以及对一般和特殊关系的认识。因此备受命题者的青睐,在近几年的高考试题中不断地出现。然而,由于这类问题本身的抽象性和其性质的隐蔽性,大多数学生在解决这类问题时,感到束手无策。下面通过例题来探讨这类问题的求解策略。</p><p>例:设y=f(x)是定义在区间[-1,1]上的函数,且满足条件:</p><p>(i)f(-1)=f(1)=0;</p><p>(ii)对任意的u,v∈[-1,1],都有—f(u)-f(v)—≤—u-v—。</p><p>(Ⅰ)证明:对任意的x∈[-1,1],都有x-1≤f(x)≤1-x;</p><p>(Ⅱ)证明:对任意的u,v∈[-1,1],都有—f(u)-f(v)—≤1</p><p>解题:</p><p>(Ⅰ)证明:由题设条件可知,当x∈[-1,1]时,有f(x)=f(x)-f(1)≤—x-1—=1-x,即x-1≤f(x)≤1-x.</p><p>(Ⅱ)证明:对任意的u,v∈[-1,1],当—u-v—≤1时,有—f(u)-f(v)—≤1</p><p>当—u-v—>1,u·v<0,不妨设u<0 v="">0且v-u>1,其中v∈(0,1],u∈[-1,0)<!--0--></p><p>要想使已知条件起到作用,须在[-1,0)上取一点,使之与u配合以利用已知条件,结合f(-1)=f(1)=0知,这个点可选-1。同理,须在(0,1]上取点1,使之与v配合以利用已知条件。所以,—f(u)-f(v)—≤—f(u)-f(-1)—+—f(v)-f(1)—≤—u+1—+—v-1—=1+u+1-v=2-(v-u)<1</p><p>另外,有关抽象函数问题中所给的函数性质往往是对定义域内的一切实数都成立的,因此根据题意,将一般问题特殊化,选取适当的特值(如令x=1,y=0等),这是解决有关抽象函数问题的非常重要的策略之一。</p><p>总之,抽象函数问题求解,用常规方法一般很难奏效,但我们如果能通过对题目的信息分析与研究,采用特殊的方法和手段求解,往往会收到事半功倍之功效,同时在运用这些策略时要做到密切配合,相得益彰。</p><p>高考数学重点题型就到这儿了,体会每篇文章的不同,摘取自己想要的,友情提醒,理解最重要哦!!!</p>
页: [1]
查看完整版本: 高考数学重点题型解析2023