meili 发表于 2022-10-14 16:17:23

小学数学公式和概念大全

<p>三角形的面积=底×高÷2。 公式 S= a×h÷2</p><p>正方形的面积=边长×边长 公式 S= a×a</p><p>长方形的面积=长×宽 公式 S= a×b</p><p>平行四边形的面积=底×高 公式 S= a×h</p><p>梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2</p><p>内角和:三角形的内角和=180度。</p><p>长方体的体积=长×宽×高 公式:V=abh</p><p>长方体(或正方体)的体积=底面积×高 公式:V=abh</p><p>正方体的体积=棱长×棱长×棱长 公式:V=aaa</p><p>圆的周长=直径×π 公式:L=πd=2πr</p><p>圆的面积=半径×半径×π 公式:S=πr2</p><p>圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh</p><p>圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2</p><p>圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh</p><p>圆锥的体积=1/3底面×积高。公式:V=1/3Sh</p><p>分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。</p><p>分数的乘法则:用分子的积做分子,用分母的积做分母。</p><p>分数的除法则:除以一个数等于乘以这个数的倒数。</p><p>读懂理解会应用以下定义定理性质公式</p><p>一、算术方面</p><p>1、加法交换律:两数相加交换加数的位置,和不变。</p><p>2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。</p><p>3、乘法交换律:两数相乘,交换因数的位置,积不变。</p><p>4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。</p><p>5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。</p><p>如:(2+4)×5=2×5+4×5</p><p>6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。</p><p>简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。</p><p>7、么叫等式?等号左边的数值与等号右边的数值相等的式子</p><p>叫做等式。</p><p>等式的基本性质:等式两边同时乘以(或除以)一个相同的数,</p><p>等式仍然成立。</p><p>8、什么叫方程式?答:含有未知数的等式叫方程式。</p><p>9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。</p><p>学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。</p><p>10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。</p><p>11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。</p><p>12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。</p><p>13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。</p><p>14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。</p><p>15、分数除以整数(0除外),等于分数乘以这个整数的倒数。</p><p>16、真分数:分子比分母小的分数叫做真分数。</p><p>17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。</p><p>18、带分数:把假分数写成整数和真分数的形式,叫做带分数。</p><p>19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数</p><p>(0除外),分数的大小不变。</p><p>20、一个数除以分数,等于这个数乘以分数的倒数。</p><p>21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。数量关系计算公式方面</p><p>1、单价×数量=总价 2、单产量×数量=总产量</p><p>3、速度×时间=路程 4、工效×时间=工作总量</p><p>5、加数+加数=和 一个加数=和+另一个加数</p><p>被减数-减数=差 减数=被减数-差 被减数=减数+差</p><p>因数×因数=积 一个因数=积÷另一个因数</p><p>被除数÷除数=商 除数=被除数÷商 被除数=商×除数</p><p>有余数的除法: 被除数=商×除数+余数</p><p>一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)</p><p>6、 1公里=1千米 1千米=2023米</p><p>1米=10分米 1分米=10厘米 1厘米=10毫米</p><p>1平方米=100平方分米 1平方分米=100平方厘米</p><p>1平方厘米=100平方毫米</p><p>1立方米=2023立方分米 1立方分米=2023立方厘米</p><p>1立方厘米=2023立方毫米</p><p>1吨=2023千克 1千克= 2023克= 1公斤= 1市斤</p><p>1公顷=20230平方米。 1亩=666.666平方米。</p><p>1升=1立方分米=2023毫升 1毫升=1立方厘米</p><p>7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3</p><p>比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。</p><p>8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18</p><p>9、比例的基本性质:在比例里,两外项之积等于两内项之积。</p><p>10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18</p><p>11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y</p><p>12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定)或k / x = y</p><p>百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。</p><p>13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。</p><p>把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。</p><p>14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。</p><p>把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。</p><p>15、要学会把小数化成分数和把分数化成小数的化发。</p><p>16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)</p><p>17、互质数: 公约数只有1的两个数,叫做互质数。</p><p>18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。</p><p>19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)</p><p>20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)</p><p>21、最简分数:分子、分母是互质数的分数,叫做最简分数。</p><p>分数计算到最后,得数必须化成最简分数。</p><p>个位上是0、2、4、6、8的数,都能被2整除,即能用2进行</p><p>约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。</p><p>22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。</p><p>23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。</p><p>24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。</p><p>28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)</p><p>29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。</p><p>30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。</p><p>31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 202314</p><p>32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。</p><p>如3. 202320234</p><p>33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 202320234……</p><p>34、什么叫代数? 代数就是用字母代替数。</p><p>35、什么叫代数式?用字母表示的式子叫做代数式。如:3x =(a+b )*c</p><p>附:初中数学概念知识点</p><p>有理数的加法运算</p><p>同号两数来相加,绝对值加不变号。</p><p>异号相加大减小,大数决定和符号。</p><p>互为相反数求和,结果是零须记好。</p><p>【注】“大”减“小”是指绝对值的大小。</p><p>有理数的减法运算</p><p>减正等于加负,减负等于加正。</p><p>有理数的乘法运算符号法则</p><p>同号得正异号负,一项为零积是零。</p><p>合并同类项</p><p>说起合并同类项,法则千万不能忘。</p><p>只求系数代数和,字母指数留原样。</p><p>去、添括号法则</p><p>去括号或添括号,关键要看连接号。</p><p>扩号前面是正号,去添括号不变号。</p><p>括号前面是负号,去添括号都变号。</p><p>解方程</p><p>已知未知闹分离,分离要靠移完成。</p><p>移加变减减变加,移乘变除除变乘。</p> <p>平方差公式</p><p>两数和乘两数差,等于两数平方差。</p><p>积化和差变两项,完全平方不是它。</p><p>完全平方公式</p><p>二数和或差平方,展开式它共三项。</p><p>首平方与末平方,首末二倍中间放。</p><p>和的平方加联结,先减后加差平方。</p><p>完全平方公式</p><p>首平方又末平方,二倍首末在中央。</p><p>和的平方加再加,先减后加差平方。</p><p>解一元一次方程</p><p>先去分母再括号,移项变号要记牢。</p><p>同类各项去合并,系数化“1”还没好。</p><p>求得未知须检验,回代值等才算了。</p><p>解一元一次方程</p><p>先去分母再括号,移项合并同类项。</p><p>系数化1还没好,准确无误不白忙。</p><p>因式分解与乘法</p><p>和差化积是乘法,乘法本身是运算。</p><p>积化和差是分解,因式分解非运算。</p><p>因式分解</p><p>两式平方符号异,因式分解你别怕。</p><p>两底和乘两底差,分解结果就是它。</p><p>两式平方符号同,底积2倍坐中央。</p><p>因式分解能与否,符号上面有文章。</p><p>同和异差先平方,还要加上正负号。</p><p>同正则正负就负,异则需添幂符号。</p><p>因式分解</p><p>一提二套三分组,十字相乘也上数。</p><p>四种方法都不行,拆项添项去重组。</p><p>重组无望试求根,换元或者算余数。</p><p>多种方法灵活选,连乘结果是基础。</p><p>同式相乘若出现,乘方表示要记住。</p><p>【注】 一提(提公因式)二套(套公式)</p><p>因式分解</p><p>一提二套三分组,叉乘求根也上数。</p><p>五种方法都不行,拆项添项去重组。</p><p>对症下药稳又准,连乘结果是基础。</p><p>二次三项式的因式分解</p><p>先想完全平方式,十字相乘是其次。</p><p>两种方法行不通,求根分解去尝试。</p><p>比和比例</p><p>两数相除也叫比,两比相等叫比例。</p><p>外项积等内项积,等积可化八比例。</p><p>分别交换内外项,统统都要叫更比。</p><p>同时交换内外项,便要称其为反比。</p><p>前后项和比后项,比值不变叫合比。</p><p>前后项差比后项,组成比例是分比。</p><p>两项和比两项差,比值相等合分比。</p><p>前项和比后项和,比值不变叫等比。</p><p>解比例</p><p>外项积等内项积,列出方程并解之。</p><p>求比值</p><p>由已知去求比值,多种途径可利用。</p><p>活用比例七性质,变量替换也走红。</p><p>消元也是好办法,殊途同归会变通。</p><p>正比例与反比例</p><p>商定变量成正比,积定变量成反比。</p><p>正比例与反比例</p><p>变化过程商一定,两个变量成正比。</p><p>变化过程积一定,两个变量成反比。</p><p>判断四数成比例</p><p>四数是否成比例,递增递减先排序。</p><p>两端积等中间积,四数一定成比例。</p><p>判断四式成比例</p><p>四式是否成比例,生或降幂先排序。</p><p>两端积等中间积,四式便可成比例。</p><p>比例中项</p><p>成比例的四项中,外项相同会遇到。</p><p>有时内项会相同,比例中项少不了。</p><p>比例中项很重要,多种场合会碰到。</p><p>成比例的四项中,外项相同有不少。</p><p>有时内项会相同,比例中项出现了。</p><p>同数平方等异积,比例中项无处逃。</p><p>根式与无理式</p><p>表示方根代数式,都可称其为根式。</p><p>根式异于无理式,被开方式无限制。</p><p>被开方式有字母,才能称为无理式。</p><p>无理式都是根式,区分它们有标志。</p><p>被开方式有字母,又可称为无理式。</p><p>求定义域</p><p>求定义域有讲究,四项原则须留意。</p><p>负数不能开平方,分母为零无意义。</p><p>指是分数底正数,数零没有零次幂。</p><p>限制条件不唯一,满足多个不等式。</p><p>求定义域要过关,四项原则须注意。</p><p>负数不能开平方,分母为零无意义。</p><p>分数指数底正数,数零没有零次幂。</p><p>限制条件不唯一,不等式组求解集。</p><p>解一元一次不等式</p><p>先去分母再括号,移项合并同类项。</p><p>系数化“1”有讲究,同乘除负要变向。</p><p>先去分母再括号,移项别忘要变号。</p><p>同类各项去合并,系数化“1”注意了。</p><p>同乘除正无防碍,同乘除负也变号。</p><p>解一元一次不等式组</p><p>大于头来小于尾,大小不一中间找。</p><p>大大小小没有解,四种情况全来了。</p><p>同向取两边,异向取中间。</p><p>中间无元素,无解便出现。</p><p>幼儿园小鬼当家,(同小相对取较小)</p><p>敬老院以老为荣,(同大就要取较大)</p><p>军营里没老没少。(大小小大就是它)</p><p>大大小小解集空。(小小大大哪有哇)</p><p>解一元二次不等式</p><p>首先化成一般式,构造函数第二站。</p><p>判别式值若非负,曲线横轴有交点。</p><p>a正开口它向上,大于零则取两边。</p><p>代数式若小于零,解集交点数之间。</p><p>方程若无实数根,口上大零解为全。</p><p>小于零将没有解,开口向下正相反。</p><p>用平方差公式因式分解</p><p>异号两个平方项,因式分解有办法。</p><p>两底和乘两底差,分解结果就是它。</p><p>用完全平方公式因式分解</p><p>两平方项在两端,底积2倍在中部。</p><p>同正两底和平方,全负和方相反数。</p><p>分成两底差平方,方正倍积要为负。</p><p>两边为负中间正,底差平方相反数。</p><p>一平方又一平方,底积2倍在中路。</p><p>三正两底和平方,全负和方相反数。</p><p>分成两底差平方,两端为正倍积负。</p><p>两边若负中间正,底差平方相反数。</p><p>用公式法解一元二次方程</p><p>要用公式解方程,首先化成一般式。</p><p>调整系数随其后,使其成为最简比。</p><p>确定参数abc,计算方程判别式。</p><p>判别式值与零比,有无实根便得知。</p><p>有实根可套公式,没有实根要告之。</p><p>用常规配方法解一元二次方程</p><p>左未右已先分离,二系化“1”是其次。</p><p>一系折半再平方,两边同加没问题。</p><p>左边分解右合并,直接开方去解题。</p><p>该种解法叫配方,解方程时多练习。</p><p>用间接配方法解一元二次方程</p><p>已知未知先分离,因式分解是其次。</p><p>调整系数等互反,和差积套恒等式。</p><p>完全平方等常数,间接配方显优势</p><p>【注】 恒等式</p><p>解一元二次方程</p><p>方程没有一次项,直接开方最理想。</p><p>如果缺少常数项,因式分解没商量。</p><p>b、c相等都为零,等根是零不要忘。</p><p>b、c同时不为零,因式分解或配方,</p><p>也可直接套公式,因题而异择良方。</p><p>正比例函数的鉴别</p><p>判断正比例函数,检验当分两步走。</p><p>一量表示另一量, 有没有。</p><p>若有再去看取值,全体实数都需要。</p><p>区分正比例函数,衡量可分两步走。</p><p>一量表示另一量, 是与否。</p><p>若有还要看取值,全体实数都要有。</p><p>正比例函数的图象与性质</p><p>正比函数图直线,经过 和原点。</p><p>K正一三负二四,变化趋势记心间。</p><p>K正左低右边高,同大同小向爬山。</p><p>K负左高右边低,一大另小下山峦。</p><p>一次函数</p><p>一次函数图直线,经过 点。</p><p>K正左低右边高,越走越高向爬山。</p><p>K负左高右边低,越来越低很明显。</p><p>K称斜率b截距,截距为零变正函。</p><p>反比例函数</p><p>反比函数双曲线,经过 点。</p><p>K正一三负二四,两轴是它渐近线。</p><p>K正左高右边低,一三象限滑下山。</p><p>K负左低右边高,二四象限如爬山。</p><p>二次函数</p><p>二次方程零换y,二次函数便出现。</p><p>全体实数定义域,图像叫做抛物线。</p><p>抛物线有对称轴,两边单调正相反。</p><p>A定开口及大小,线轴交点叫顶点。</p><p>顶点非高即最低。上低下高很显眼。</p><p>如果要画抛物线,平移也可去描点,</p><p>提取配方定顶点,两条途径再挑选。</p><p>列表描点后连线,平移规律记心间。</p><p>左加右减括号内,号外上加下要减。</p><p>二次方程零换y,就得到二次函数。</p><p>图像叫做抛物线,定义域全体实数。</p><p>A定开口及大小,开口向上是正数。</p><p>绝对值大开口小,开口向下A负数。</p><p>抛物线有对称轴,增减特性可看图。</p><p>线轴交点叫顶点,顶点纵标最值出。</p><p>如果要画抛物线,描点平移两条路。</p><p>提取配方定顶点,平移描点皆成图。</p><p>列表描点后连线,三点大致定全图。</p><p>若要平移也不难,先画基础抛物线,</p><p>顶点移到新位置,开口大小随基础。</p><p>【注】基础抛物线</p><p>直线、射线与线段</p><p>直线射线与线段,形状相似有关联。</p><p>直线长短不确定,可向两方无限延。</p><p>射线仅有一端点,反向延长成直线。</p><p>线段定长两端点,双向延伸变直线。</p><p>两点定线是共性,组成图形最常见。</p><p>角</p><p>一点出发两射线,组成图形叫做角。</p><p>共线反向是平角,平角之半叫直角。</p><p>平角两倍成周角,小于直角叫锐角。</p><p>直平之间是钝角,平周之间叫优角。</p><p>互余两角和直角,和是平角互补角。</p><p>一点出发两射线,组成图形叫做角。</p><p>平角反向且共线,平角之半叫直角。</p><p>平角两倍成周角,小于直角叫锐角。</p><p>钝角界于直平间,平周之间叫优角。</p><p>和为直角叫互余,互为补角和平角。</p><p>证等积或比例线段</p><p>等积或比例线段,多种途径可以证。</p><p>证等积要改等比,对照图形看特征。</p><p>共点共线线相交,平行截比把题证。</p><p>三点定型十分像,想法来把相似证。</p><p>图形明显不相似,等线段比替换证。</p><p>换后结论能成立,原来命题即得证。</p><p>实在不行用面积,射影角分线也成。</p><p>只要学习肯登攀,手脑并用无不胜。</p><p>解无理方程</p><p>一无一有各一边,两无也要放两边。</p><p>乘方根号无踪迹,方程可解无负担。</p><p>两无一有相对难,两次乘方也好办。</p><p>特殊情况去换元,得解验根是必然。</p><p>解分式方程</p><p>先约后乘公分母,整式方程转化出。</p><p>特殊情况可换元,去掉分母是出路。</p><p>求得解后要验根,原留增舍别含糊。</p><p>列方程解应用题</p><p>列方程解应用题,审设列解双检答。</p><p>审题弄清已未知,设元直间两办法。</p><p>列表画图造方程,解方程时守章法。</p><p>检验准且合题意,问求同一才作答。</p><p>添加辅助线</p><p>学习几何体会深,成败也许一线牵。</p><p>分散条件要集中,常要添加辅助线。</p><p>畏惧心理不要有,其次要把观念变。</p><p>熟能生巧有规律,真知灼见靠实践。</p><p>图中已知有中线,倍长中线把线连。</p><p>旋转构造全等形,等线段角可代换。</p><p>多条中线连中点,便可得到中位线。</p><p>倘若知角平分线,既可两边作垂线。</p><p>也可沿线去翻折,全等图形立呈现。</p><p>角分线若加垂线,等腰三角形可见。</p><p>角分线加平行线,等线段角位置变。</p><p>已知线段中垂线,连接两端等线段。</p><p>辅助线必画虚线,便与原图联系看。</p><p>两点间距离公式</p><p>同轴两点求距离,大减小数就为之。</p><p>与轴等距两个点,间距求法亦如此。</p><p>平面任意两个点,横纵标差先求值。</p><p>差方相加开平方,距离公式要牢记。</p><p>矩形的判定</p><p>任意一个四边形,三个直角成矩形;</p><p>对角线等互平分,四边形它是矩形。</p><p>已知平行四边形,一个直角叫矩形;</p><p>两对角线若相等,理所当然为矩形。</p><p>菱形的判定</p><p>任意一个四边形,四边相等成菱形;</p><p>四边形的对角线,垂直互分是菱形。</p><p>已知平行四边形,邻边相等叫菱形;</p><p>两对角线若垂直,顺理成章为菱形。</p>
页: [1]
查看完整版本: 小学数学公式和概念大全