2023中考数学:点线面角试题解析
<p>一、选择题</p><p>1.(2023山东济南,第2题,3分)如图,点O在直线AB上,若A=30,则ABC的度数是</p><p>A.45B.30 C.25 D.60</p><p>【解析】因为,所以,故选C.</p><p>2.(2023四川凉山州,第2题,4分)下列图形中,1与2是对顶角的是()</p><p>A.1、2没有公共顶点</p><p>B.1、2两边不互为反向延长线</p><p>C.1、2有公共顶点,两边互为反向延长线</p><p>D.1、2两边不互为反向延长线</p><p>考点:对顶角、邻补角</p><p>分析:根据对顶角的特征,有公共顶点,且两边互为反向延长线,对各选项分析判断后利用排除法求解.</p><p>解答:解:A.1、2没有公共顶点,不是对顶角,故本选项错误;</p><p>B.1、2两边不互为反向延长线,不是对顶角,故本选项错误;</p><p>C.1、2有公共顶点,两边互为反向延长线,是对顶角,故本选项正确;</p><p>D.1、2两边不互为反向延长线,不是对顶角,故本选项错误;</p><p>故选:C.</p><p>点评:本题主要考查了对顶角的定义,熟记对顶角的图形特征是解题的关键,是基础题,比较简单.</p><p>3.(2023襄阳,第7题3分)下列命题错误的是()</p><p>A.所有的实数都可用数轴上的点表示B.等角的补角相等</p><p>C.无理数包括正无理数,0,负无理数D.两点之间,线段最短</p><p>考点:命题与定理.</p><p>专题:计算题.</p><p>分析:根据实数与数轴上的点一一对应对A进行判断;</p><p>根据补角的定义对B进行判断;</p><p>根据无理数的分类对C进行判断;</p><p>根据线段公理对D进行判断.</p><p>解答:解:A、所有的实数都可用数轴上的点表示,所以A选项的说法正确;</p><p>B、等角的补角相等,所以B选项的说法正确;</p><p>C、无理数包括正无理数和负无理,所以C选项的说法错误;</p><p>D、两点之间,线段最短,所以D选项的说法正确.</p><p>故选C.</p><p>点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.</p><p>4.(2023浙江金华,第2题4分)如图,经过刨平的木析上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线.能解释这一实际问题的数学知识是【】</p><p>A.两点确定一条直线B.两点之间线段最短</p><p>C.垂线段最短 D.在同一平面内,过一点有且只有一条直线与已知直线垂直</p><p>5.(2023滨州,第5题3分)如图,OB是AOC的角平分线,OD是COE的角平分线,如果AOB=40,COE=60,则BOD的度数为()</p><p>A.50 B.60C.65D.70</p><p>考点:角的计算;角平分线的定义</p><p>分析:先根据OB是AOC的角平分线,OD是COE的角平分线,AOB=40,COE=60求出BOC与COD的度数,再根据BOD=BOC+COD即可得出结论.</p><p>解答:解:∵OB是AOC的角平分线,OD是COE的角平分线,AOB=40,COE=60,</p><p>BOC=AOB=40,COD=COE=60=30,</p><p>BOD=BOC+COD=40+30=70.</p><p>故选D.</p><p>点评:本题考查的是角的计算,熟知角平分线的定义是解答此题的关键.</p><p>6.(2023济宁,第3题3分)把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理正确的是()</p><p>A.两点确定一条直线B.垂线段最短</p><p>C.两点之间线段最短 D.三角形两边之和大于第三边</p><p>考点:线段的性质:两点之间线段最短.</p><p>专题:应用题.</p><p>分析:此题为数学知识的应用,由题意把一条弯曲的公路改成直道,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.</p><p>解答:解:要想缩短两地之间的里程,就尽量是两地在一条直线上,因为两点间线段最短.</p><p>故选C.</p><p>点评:本题考查了线段的性质,牢记线段的性质是解题关键.</p><p>7.(2023年山东泰安,第5题3分)如图,把一直尺放置在一个三角形纸片上,则下列结论正确的是()</p><p>A.20232+lt;2023+lt;2023+gt;180</p><p>分析:根据平行线的性质推出4=180,7,根据三角形的内角和定理得出3=180A,推出结果后判断各个选项即可.</p><p>解:A、∵DG∥EF,4=180,∵4,gt;1,</p><p>2023,故本选项错误;</p><p>B、∵DG∥EF,3,5=3</p><p>=(180﹣1)+(180﹣ALH)=360﹣(ALH)=360﹣(180﹣A)</p><p>=180A180,故本选项错误;</p><p>C、∵DG∥EF,4=180,故本选项错误;</p><p>D、∵DG∥EF,7,∵2=180A180,2023,故本选项正确;故选D.</p><p>点评:本题考查了平行线的性质,三角形的内角和定理的应用,主要考查学生运用定理进行推理的能力,题目比较好,难度适中.</p><p>8.(2023广西贺州,第3题3分)如图,OAOB,若1=55,则2的度数是()</p><p>A.35B.40C.45D.60</p><p>考点:余角和补角</p><p>分析:根据两个角的和为90,可得两角互余,可得答案.</p><p>解答:解:∵OAOB,若1=55,</p><p>=90,</p><p>即1=90,</p><p>2=35,</p><p>故选:A.</p><p>点评:本题考查了余角和补角,两个角的和为90,这两个角互余.</p><p>9.(2023襄阳,第5题3分)如图,BCAE于点C,CD∥AB,B=55,则1等于()</p><p>A.35B.45C.55D.65</p><p>考点:平行线的性质;直角三角形的性质</p><p>分析:利用“直角三角形的两个锐角互余”的性质求得A=35,然后利用平行线的性质得到B=35.</p><p>解答:解:如图,∵BCAE,</p><p>ACB=90.</p><p>B=90.</p><p>又∵B=55,</p><p>A=35.</p><p>又CD∥AB,</p><p>B=35.</p><p>故选:A.</p><p>点评:本题考查了平行线的性质和直角三角形的性质.此题也可以利用垂直的定义、邻补角的性质以及平行线的性质来求1的度数.</p><p>10.(2023湖北黄冈,第2题3分)如果与互为余角,则()</p><p>A.+=180B.﹣=180C.﹣=90D.+=90</p><p>考点:余角和补角.</p><p>分析:根据互为余角的定义,可以得到答案.</p><p>解答:解:如果与互为余角,则+=900.</p><p>故选:D.</p><p>点评:此题主要考查了互为余角的性质,正确记忆互为余角的定义是解决问题的关键.</p><p>二、填空题</p><p>1.(2023山东枣庄,第18题4分)图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从顶点A爬行到顶点B的最短距离为(3+3)cm.</p><p>考点:平面展开-最短路径问题;截一个几何体</p><p>分析:要求蚂蚁爬行的最短距离,需将图②的几何体表面展开,进而根据“两点之间线段最短”得出结果.</p><p>解答:解:如图所示:</p><p>△BCD是等腰直角三角形,△ACD是等边三角形,</p><p>在Rt△BCD中,CD==6 cm,</p><p>BE=CD=3 cm,</p><p>在Rt△ACE中,AE==3 cm,</p><p>从顶点A爬行到顶点B的最短距离为(3+3)cm.</p><p>故答案为:(3+3).</p><p>点评:考查了平面展开﹣最短路径问题,本题就是把图②的几何体表面展开成平面图形,根据等腰直角三角形的性质和等边三角形的性质解决问题.</p><p>2.(2023福建泉州,第13题4分)如图,直线a∥b,直线c与直线a,b都相交,1=65,则2=65.</p><p>考点:平行线的性质.</p><p>分析:根据平行线的性质得出2,代入求出即可.</p><p>解答:解:∵直线a∥b,</p><p>2,</p><p>∵1=65,</p><p>2=65,</p><p>故答案为:65.</p><p>点评:本题考查了平行线的性质的应用,注意:两直线平行,同位角相等.</p><p>3.(2023福建泉州,第15题4分)如图,在△ABC中,C=40,CA=CB,则△ABC的外角ABD=110.</p><p>考点:等腰三角形的性质.</p><p>分析:先根据等腰三角形的性质和三角形的内角和定理求出A,再根据三角形的外角等于等于与它不相邻的两个内角的和,进行计算即可.</p><p>解答:解:∵CA=CB,</p><p>ABC,</p><p>∵C=40,</p><p>A=70</p><p>ABD=C=110.</p><p>故答案为:110.</p><p>点评:此题考查了等腰三角形的性质,用到的知识点是等腰三角形的性质、三角形的外角等于等于与它不相邻的两个内角的和.</p><p>4.(2023邵阳,第11题3分)已知=13,则的余角大小是77.</p><p>考点:余角和补角.</p><p>分析:根据互为余角的两个角的和等于90列式计算即可得解.</p><p>解答:解:∵=13,</p><p>的余角=90﹣13=77.</p><p>故答案为:77.</p><p>点评:本题考查了余角的定义,是基础题,熟记概念是解题的关键.</p><p>5.(2023浙江湖州,第13题4分)计算:50﹣2023=.</p><p>分析:根据度化成分乘以60,可得度分的表示方法,根据同单位的相减,可得答案.</p><p>解:原式=2023﹣2023=2023,故答案为:2023.</p><p>点评:此类题是进行度、分、秒的加法计算,相对比较简单,注意以60为进制即可.</p><p>6.(2023福建泉州,第9题4分)如图,直线AB与CD相交于点O,AOD=50,则BOC=50.</p><p>考点:对顶角、邻补角.</p><p>分析:根据对顶角相等,可得答案.</p><p>解答:解;∵BOC与AOD是对顶角,</p><p>BOC=AOD=50,</p><p>故答案为:50.</p><p>点评:本题考查了对顶角与邻补角,对顶角相等是解题关键</p>
页:
[1]