高中数学不等关系与不等式检测考试题(附答案)
<p>3.1.1不等关系与不等式 优化训练</p><p>1.实数x的绝对值不大于2,用不等式表示为()</p><p>A.|x|>2 B.|x|2</p><p>C.|x|<2 D.|x|2</p><p>答案:D</p><p>2.某隧道入口竖立着“限高4.5米”的警示牌,是指示司机要安全通过隧道,应使车载货物高度h满足关系为()</p><p>A.h<4.5 B.h>4.5</p><p>C.h4.5 D.h4.5</p><p>解析:选C.限高也就是不高于,即指小于等于.</p><p>3.若a=ln22,b=ln33,c=ln55,则()</p><p>A.ac B.ca</p><p>C.cb D.bc</p><p>解析:选C.∵3ln2=ln8ln9=2ln3,ab,故排除B,D项,同理可得ca,故选C.</p><p>4.若x1,则x+1-x________x-x-1.</p><p>解析:(x+1-x)-(x-x-1)=1x+1+x-1x+x-1=x-1-x+1x+1+xx+x-1,∵x1,</p><p>0x-1x+1,x-1x+1,</p><p>x-1-x+1x+1+xx+x-10,</p><p>x+1-xx-x-1.</p><p>答案:</p><p>5.请用数学式子描述下面两个不等关系:</p><p>(1)某博物馆的门票每位10元,20人以上(含20人)可享受8折优惠.那么不足20人时,当多少人去参观时,买20人的团体票不比普通票贵?</p><p>(2)某杂志以每本2元的价格发行时,发行量为10万册.经过调查,若价格每提高0.2元,发行量就减少2023册.要使杂志社的销售收入大于22.4万元,每本杂志的价格应定在怎样的范围内?</p><p>解:(1)设有x(x20,xN+)人去参观.</p><p>则20230x(x20),得x16,即2023且xN+.</p><p>(2)设每本杂志价格提高x元,则实际发行量为(10-0.5x0.2)万册,</p><p>(2+x)(10-0.5x0.2)22.4,</p><p>即(2+x)(10-52x)22.4.</p><p>化简得:5x2-10x+4.80,0.81.2.</p><p>2.8<2+x<3.2即每本杂志的价格应在大于2.8元小于3.2元.</p><p>1.下面表示“a与b的差是非负数”的不等关系的是()</p><p>A.a-b>0 B.a-b<0</p><p>C.a-b D.a-b0</p><p>答案:C</p><p>2.若m2且n-1,则M=m2+n2-4m+2n的值与-5的大小关系为()</p><p>A.M >-5 B.M<-5</p><p>C.M=-5 D.不确定</p><p>解析:选A.M-(-5)=m2+n2-4m+2n+5</p><p>=(m2-4m+4)+(n2+2n+1)</p><p>=(m-2)2+(n+1)2,</p><p>∵m2且n-1,</p><p>M-(-5)=(m-2)2+(n+1)2>0.</p><p>3.某校对高一美术生划定录取分数线,专业成绩x不低于95分,文化课总分y高于380分,体育成绩z超过45分,用不等式表示就是()</p><p>A.x380z>45 B.x95y>380z45</p><p>C.x>95y>380z>45 D.x95y>380z>45</p><p>答案:D</p><p>4.若0<a<1,c>1,则ac+1与a+c的大小关系为()</p><p>A.ac+1<a+c B.ac+1>a+c</p><p>C.ac+1=a+c D.不能确定</p><p>解析:选A.ac+1-(a+c)=a(c-1)+1-c</p><p>=(a-1)(c-1),</p><p>∵0<a<1,c>1,a-1<0,c-1>0,</p><p>ac+1-(a+c)=(a-1)(c-1)<0,</p><p>ac+1<a+c.</p><p>5.已知a,b是任意实数,且ab,则()</p><p>A.a2 B.ba1</p><p>C.lg(a-b) D.13a13b</p><p>解析:选D.当a0时,b0,a2b2;当a0时,ba1;</p><p>当0a-b1时,lg(a-b)0.从而A、B、C均错.</p><p>6.某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有()</p><p>A.5种 B.6种</p><p>C.7种 D.8种</p><p>解析:选C.设购买单片软件和盒装磁盘分别为x片、y盒.</p><p>则60x+70y3y2x,yN+,即6x+7y3y2x,yN+.</p><p>(1)当x=3时,7y32,y327,∵yN+,</p><p>y=2,y=3,y=4,</p><p>此时有3种选购方式.</p><p>(2)当x=4时,7y26,y267,</p><p>∵yN+,y=2,y=3,</p><p>此时有2种选购方式.</p><p>(3)当x=5时,y207,</p><p>∵yN+,y=2,</p><p>此时有1种选购方式.</p><p>(4)当x=6时,y=2,此时有1种选购方式.</p><p>共有7种选购方式.</p><p>7.设偶函数f(x)=loga|x-b|在(0,+)上单调递增,则f(b-2)与f(a+1)的大小关系是________.</p><p>解析: ∵f(x)为偶函数,b=0.∵f(x)=loga|x|在(0,+)上单调递增,a1,f(b-2)=loga2,f(a+1)=loga|a+1|,|a+1|2,f(a+1)f(b-2).</p><p>答案:f(a+1)f(b-2)</p><p>8.实数a,b,c满足b+c=6-4a+3a2,c-b=4-4a+a2,则a,b,c的大小关系是________.</p><p>解析:∵c-b=4-4a+a2=(a-2)20,cb.</p><p>又∵b-a=12[(b+c)-(c-b)]-a=1+a2-a=(a-12)2+340,ba,综上可知:ca.</p><p>答案:ca</p><p>9.一个两位数个位数字为a,十位数字为b,且这个两位数大于50,可用不等关系表示为________(用含a、b的不等式表示).</p><p>解析:这个两位数为10b+a,且50<10b+a<100.</p><p>答案:50<10b+a<100</p><p>10.已知x1,试比较3x3和3x2-x+1的大小.</p><p>解:因为3x3-(3x2-x+1)=(3x3-3x2)+(x-1)=</p><p>3x2(x-1)+(x-1)=(x-1)(3x2+1),</p><p>由x1,得x-10,而3x2+10,</p><p>则(x-1)(3x2+1)0,</p><p>所以3x33x2-x+1.</p><p>11.已知a,b为正实数,试比较ab+ba与a+b的大小.</p><p>解:(ab+ba)-(a+b)</p><p>=(ab-b)+(ba-a)</p><p>=a-bb+b-aa=a-ba-bab</p><p>=a-b2a+bab.</p><p>∵a,b为正实数,</p><p>a+b>0,ab>0,(a-b)20,</p><p>a-b2a+bab0,</p><p>ab+baa+b.</p><p>12.已知函数f(x)=x2+ax+b(a,bR),试比较12与f(x+y2)的大小.</p><p>解:∵12-f(x+y2)</p><p>=12[(x2+ax+b)+(y2+ay+b)]-[(x+y2)2+a(x+y2)+b]</p><p>=12(x2+y2)+12a(x+y)+b-14(x+y)2-a2(x+y)-b</p><p>=14x2+14y2-12xy=14(x-y)20,</p><p>12f(x+y2).</p>
页:
[1]