高中数学集合间的基本关系过关检测题(有答案)
<p>1.下列六个关系式,其中正确的有()</p><p>①{a,b}={b,a};②{a,b}{b,a};③={};④{0}=;⑤ {0};⑥0{0}.</p><p>A.6个B.5个</p><p>C.4个 D.3个及3个以下</p><p>解析:选C.①②⑤⑥正确.</p><p>2.已知集合A,B,若A不是B的子集,则下列命题中正确的是()</p><p>A.对任意的aA,都有aB</p><p>B.对任意的bB,都有bA</p><p>C.存在a0,满足a0A,a0B</p><p>D.存在a0,满足a0A,a0B</p><p>解析:选C.A不是B的子集,也就是说A中存在不是B中的元素,显然正是C选项要表达的.对于A和B选项,取A={1,2},B={2,3}可否定,对于D选项,取A={1},B={2,3}可否定.</p><p>3.设A={x|1<x<2},B={x|x<a},若A B,则a的取值范围是()</p><p>A.a B.a1</p><p>C.a D.a2</p><p>解析:选A.A={x|12},B={x|xa},要使A B,则应有a2.</p><p>4.集合M={x|x2-3x-a2+2=0,aR}的子集的个数为________.</p><p>解析:∵=9-4(2-a2)=1+4a2>0,M恒有2个元素,所以子集有4个.</p><p>答案:4</p><p>1.如果A={x|x-1},那么()</p><p>A.0A B.{0}A</p><p>C.A D.{0}A</p><p>解析:选D.A、B、C的关系符号是错误的.</p><p>2.已知集合A={x|-12},B={x|01},则()</p><p>A.A B.A B</p><p>C.B A D.AB</p><p>解析:选C.利用数轴(图略)可看出xBxA,但xAxB不成立.</p><p>3.定义A-B={x|xA且xB},若A={1,3,5,7,9},B={2,3,5},则A-B等于()</p><p>A.A B.B</p><p>C.{2} D.{1,7,9}</p><p>解析:选D.从定义可看出,元素在A中但是不能在B中,所以只能是D.</p><p>4.以下共有6组集合.</p><p>(1)A={(-5,3)},B={-5,3};</p><p>(2)M={1,-3},N={3,-1};</p><p>(3)M=,N={0};</p><p>(4)M={},N={3.2023};</p><p>(5)M={x|x是小数},N={x|x是实数};</p><p>(6)M={x|x2-3x+2=0},N={y|y2-3y+2=0}.</p><p>其中表示相等的集合有()</p><p>A.2组 B.3组</p><p>C.4组 D.5组</p><p>解析:选A.(5),(6)表示相等的集合,注意小数是实数,而实数也是小数.</p><p>5.定义集合间的一种运算“*”满足:A*B={|=xy(x+y),xA,yB}.若集合A={0,1},B={2,3},则A*B的子集的个数是()</p><p>A.4 B.8</p><p>C.16 D.32</p><p>解析:选B.在集合A和B中分别取出元素进行*的运算,有02(0+2)=03(0+3)=0,12(1+2)=6,13(1+3)=12,因此可知A*B={0,6,12},因此其子集个数为23=8,选B.</p><p>6.设B={1,2},A={x|xB},则A与B的关系是()</p><p>A.AB B.BA</p><p>C.AB D.BA</p><p>解析:选D.∵B的子集为{1},{2},{1,2},,</p><p>A={x|xB}={{1},{2},{1,2},},BA.</p><p>7.设x,yR,A={(x,y)|y=x},B={(x,y)|yx=1},则A、B间的关系为________.</p><p>解析:在A中,(0,0)A,而(0,0)B,故B A.</p><p>答案:B A</p><p>8.设集合A={1,3,a},B={1,a2-a+1},且AB,则a的值为________.</p><p>解析:AB,则a2-a+1=3或a2-a+1=a,解得a=2或a=-1或a=1,结合集合元素的互异性,可确定a=-1或a=2.</p><p>答案:-1或2</p><p>9.已知A={x|x<-1或x>5},B={x|ax<a+4},若A B,则实数a的取值范围是________.</p><p>解析:作出数轴可得,要使A B,则必须a+4-1或a>5,解之得{a|a>5或a-5}.</p><p>答案:{a|a>5或a-5}</p><p>10.已知集合A={a,a+b,a+2b},B={a,ac,ac2},若A=B,求c的值.</p><p>解:①若a+b=aca+2b=ac2,消去b得a+ac2-2ac=0,</p><p>即a(c2-2c+1)=0.</p><p>当a=0时,集合B中的三个元素相同,不满足集合中元素的互异性,</p><p>故a0,c2-2c+1=0,即c=1;</p><p>当c=1时,集合B中的三个元素也相同,</p><p>c=1舍去,即此时无解.</p><p>②若a+b=ac2a+2b=ac,消去b得2ac2-ac-a=0,</p><p>即a(2c2-c-1)=0.</p><p>∵a0,2c2-c-1=0,即(c-1)(2c+1)=0.</p><p>又∵c1,c=-12.</p><p>11.已知集合A={x|12},B={x|1a,a1}.</p><p>(1)若A B,求a的取值范围;</p><p>(2)若BA,求a的取值范围.</p><p>解:(1)若A B,由图可知,a2.</p><p>(2)若BA,由图可知,12.</p><p>12.若集合A={x|x2+x-6=0},B={x|mx+1=0},且B A,求实数m的值.</p><p>解:A={x|x2+x-6=0}={-3,2}.</p><p>∵B A,mx+1=0的解为-3或2或无解.</p><p>当mx+1=0的解为-3时,</p><p>由m(-3)+1=0,得m=13;</p><p>当mx+1=0的解为2时,</p><p>由m2+1=0,得m=-12;</p><p>当mx+1=0无解时,m=0.</p><p>综上所述,m=13或m=-12或m=0.</p>
页:
[1]