meili 发表于 2022-10-14 16:09:53

高中数学指数与指数函数练习题及答案

<p>2023级数学单元同步试题</p><p>(指数与指数函数)</p><p>姓名____ 学号____</p><p>一、选择题(12*5分)</p><p>1.( )4( )4等于( )</p><p>(A)a16 (B)a8 (C)a4 (D)a2</p><p>2.函数f(x)=(a2-1)x在R上是减函数,则a的取值范围是( )</p><p>(A) (B) (C)a (D)1</p><p>3.下列函数式中,满足f(x+1)= f(x)的是( )</p><p>(A) (x+1) (B)x+ (C)2x (D)2-x</p><p>4.已知ab,ab 下列不等式(1)a2b2,(2)2a2b,(3) ,(4)a b ,(5)( )a( )b</p><p>中恒成立的有( )</p><p>(A)1个 (B)2个 (C)3个 (D)4个</p><p>5.函数y= 的值域是( )</p><p>(A)(- ) (B)(- 0) (0,+ )</p><p>(C)(-1,+ ) (D)(- ,-1) (0,+ )</p><p>6.下列函数中,值域为R+的是( )</p><p>(A)y=5 (B)y=( )1-x</p><p>(C)y= (D)y=</p><p>7.下列关系中正确的是( )</p><p>(A)( ) ( ) ( ) (B)( ) ( ) ( )</p><p>(C)( ) ( ) ( ) (D)( ) ( ) ( )</p><p>8.若函数y=32x-1的反函数的图像经过P点,则P点坐标是( )</p><p>(A)(2,5) (B)(1,3) (C)(5,2) (D)(3,1)</p><p>9.函数f(x)=3x+5,则f-1(x)的定义域是( )</p><p>(A)(0,+ ) (B)(5,+ )</p><p>(C)(6,+ ) (D)(- ,+ )</p><p>10.已知函数f(x)=ax+k,它的图像经过点(1,7),又知其反函数的图像经过点(4,0),则函数f(x)的表达式是( )</p><p>(A)f(x)=2x+5 (B)f(x)=5x+3 (C)f(x)=3x+4 (D)f(x)=4x+3</p><p>11.已知01,b-1,则函数y=ax+b的图像必定不经过( )</p><p>(A)第一象限 (B)第二象限</p><p>(C)第三象限 (D)第四象限</p><p>12.一批设备价值a万元,由于使用磨损,每年比上一年价值降低b%,则n年后这批设备的价值为( )</p><p>(A)na(1-b%) (B)a(1-nb%) (C)a[(1-(b%))n (D)a(1-b%)n</p><p>答题卡</p><p>题号 1 2 3 4 5 6 7 8 9 10 11 12</p><p>答案</p><p>二、填空题(4*4分)</p><p>13.若a a ,则a的取值范围是 。</p><p>14.若10x=3,10y=4,则10x-y= 。</p><p>15.化简= 。</p><p>16.函数y=3 的单调递减区间是 。</p><p>三、解答题</p><p>17.(1)计算: (2)化简:</p><p>18.(12分)若 ,求 的值.</p><p>19.(12分)设01,解关于x的不等式a a .</p><p>20.(12分)已知x [-3,2],求f(x)= 的最小值与最大值。</p><p>21.(12分)已知函数y=( ) ,求其单调区间及值域。</p><p>22.(14分)若函数 的值域为 ,试确定 的取值范围。</p><p>第四单元 指数与指数函数</p><p>一、 选择题</p><p>题号 1 2 3 4 5 6 7 8 9 10</p><p>答案 A C D D D B C A D B</p><p>题号 11 12 13 14 15 16 17 18 19 20</p><p>答案 C D C B A D A A A D</p><p>二、填空题</p><p>1.01 2. 3.1</p><p>4.(- ,0) (0,1) (1,+ ) ,联立解得x 0,且x 1。</p><p>5.[( )9,39] 令U=-2x2-8x+1=-2(x+2)2+9,∵ -3 ,又∵y=( )U为减函数,( )9 y 39。 6。D、C、B、A。</p><p>7.(0,+ )</p><p>令y=3U,U=2-3x2, ∵y=3U为增函数,y=3 的单调递减区间为上的最大值是14,(m-1+1)2-2=14或(m+1)2-2=14,解得m= 或3。</p><p>10.2</p><p>11.∵ g(x)是一次函数,可设g(x)=kx+b(k 0), ∵F(x)=f=2kx+b。由已知有F(2)= ,F( )=2, , k=- ,b= ,f(x)=2-</p><p>三、解答题</p><p>1.∵02, y=ax在(- ,+ )上为减函数,∵ a a , 2x2-3x+1x2+2x-5,解得23,</p><p>2.g=4 =4 =2 ,f=4 =2 ,∵ggf, 2 2 ,22x+122x, 2x+12x,解得01</p><p>3.f(x)= , ∵x [-3,2],.则当2-x= ,即x=1时,f(x)有最小值 ;当2-x=8,即x=-3时,f(x)有最大值57。</p><p>4.要使f(x)为奇函数,∵ x R,需f(x)+f(-x)=0, f(x)=a- =a- ,由a- =0,得2a- =0,得2a- 。</p><p>5.令y=( )U,U=x2+2x+5,则y是关于U的减函数,而U是(- ,-1)上的减函数,[-1,+ ]上的增函数, y=( ) 在(- ,-1)上是增函数,而在[-1,+ ]上是减函数,又∵U=x2+2x+5=(x+1)2+4 4, y=( ) 的值域为(0,( )4)]。</p><p>6.Y=4x-3 ,依题意有</p><p>即 , 2</p><p>由函数y=2x的单调性可得x 。</p><p>7.(2x)2+a(2x)+a+1=0有实根,∵ 2x0,相当于t2+at+a+1=0有正根,</p><p>则</p><p>8.(1)∵定义域为x ,且f(-x)= 是奇函数;</p><p>(2)f(x)= 即f(x)的值域为(-1,1);</p><p>(3)设x1,x2 ,且x1x2,f(x1)-f(x2)= (∵分母大于零,且a a ) f(x)是R上的增函数。</p>
页: [1]
查看完整版本: 高中数学指数与指数函数练习题及答案