高中数学函数的表示方法过关检测试题及答案
<p>训练11 函数的表示方法</p><p>基础巩固 站起来,拿得到!</p><p>1.设f(x)满足f(-x)+2f(x)=x+3,则f(1)等于( )</p><p>A.2 B.4 C. D.</p><p>答案:A</p><p>解析: f(1)=2.</p><p>2.函数y=x(x-2)的定义域为[a,b],值域为[-1,3],则点(a,b)的轨迹是图中的( )</p><p>A.点H(1,3)和F(-1,1) B.线段EF、GH</p><p>C.线段EH、FG D.线段EF、EH</p><p>答案:D</p><p>解析:y=x(x-2)的图象如图所示,依题意a、b应满足 或</p><p>3.已知f( x-1)=2x+3,且f(m)=6,则m等于( )</p><p>A.- B. C. D.-</p><p>答案:A</p><p>解析:∵f( x-1)=2x+3=4( x-1)+7 f(x)=4x+7,</p><p>f(m)=4m+7=6,m=- .</p><p>4.已知函数f(x)的定义域是[-1,2],则函数y=f(x)+f(-x)的定义域是( )</p><p>A.[-1,1] B.[-2,2] C.[-1,2] D.[-2,1]</p><p>答案:A</p><p>解析:∵f(x)定义域满足-12,</p><p>y=f(x)+f(-x)需满足</p><p>-11.</p><p>函数y=f(x)+f(-x)的定义域是[-1,1].</p><p>5.函数f(x)对任意的自然数x,满足f(x+1)=f(x)+1,f(0)=1,则f(5)=_________________.</p><p>答案:6</p><p>解析:由f(x+1)=f(x)+1,f(0)=1,可依次算出f(1)=2,f(2)=3,f(3)=4,f(4)=5,f(5)=6,….</p><p>6.函数y= 的最大值是_________________.</p><p>答案:4</p><p>解析:当x0时,y当01时,3当x1时,y4.故ymax=4.</p><p>7.作出下列各函数的图象:</p><p>(1)y=1-x,x (2)y=2x2-4x-3,0</p><p>(3)y=|x-1|; (4)y=</p><p>解:(1)这个函数的图象由一些点组成,这些点都在直线y=1-x上,∵xZ,从而yZ,这些点称为整点,如图(1).</p><p>(2)∵03,这个函数的图象是抛物线y=2x2-4x-3介于03之间的一段弧,如图(2).</p><p>(3)所给函数可写成分段函数</p><p>y= 是端点为(1,0)的两条射线(称为“羊角”),如图(3).</p><p>(4)这个函数的图象由两部分组成:</p><p>当01时,为双曲线y= 的一段;</p><p>当x1时,为直线y=x的一段,如图(4).</p><p>能力提升 踮起脚,抓得住!</p><p>8.一批材料可以建成200 m长的围墙,现用这些材料在一边靠墙的地方围成一块矩形场,中间隔成3个面积相等的矩形(如图),则围成的矩形最大总面积为( )</p><p>A.100 m2 B.10 000 m2 C.2 500 m2 D.6 250 m2</p><p>答案:C</p><p>解析:由已知得4a+3b=200,3b=200-4a,</p><p>S=3ab=a(200-4a)=-4(a-25)2+2 500,</p><p>故当a=25,b= 时,围成矩形的最大面积为2 500 m2.</p><p>9.函数y=1- 的图象(如图)是( )</p><p>答案:B</p><p>解析:(特殊值法)令x=0,则y=2,观察图象,排除A、D.</p><p>再令y=0,则x=2,观察图象,排除C.</p><p>10.设函数y=f(x)的图象关于直线x=1对称.若当x1时,y=x2,则当x1时,y=_____________.</p><p>答案:x2-4x+4</p><p>解析:与y=f(x)图象关于直线x=1对称的函数表达式为y=f(2-x).故当x1时,y=f(2-x)=(2-x)2=x2-4x+4.</p><p>11.对一切实数x、y,函数f(x)满足f(xy)=f(x)f(y)且f(0)0,则f(2 006)的值为____________.</p><p>答案:1</p><p>解析:令x=y=0,则f(0)=f2(0) f(0)=1〔∵f(0)0〕,再令x=2 006,y=0,则f(0)=f(2 006).f(0) f(2 006)=1.</p><p>12.已知函数(x)=f(x)+g(x),其中f(x)是x的正比例函数,g(x)是x的反比例函数,且( )=16,(1)=8,</p><p>(1)求(x)的解析式,并指出定义域;</p><p>(2)求(x)的值域.</p><p>解:(1)设f(x)=ax,g(x)= ,a、b为比例常数,</p><p>则(x)=f(x)+g(x)=ax+ .</p><p>由</p><p>(x)=3x+ ,</p><p>其定义域为(-,0)(0,-).</p><p>(2)由y=3x+ ,得3x2-yx+5=0(x0),</p><p>∵xR且x0,=y2-600.</p><p>y2 或y-2 .(x)的值域为(-,-2 )[2 ,+).</p><p>13.用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次的效果作如下假定:用1单位量的水可洗掉蔬菜上残留农药量的 ,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上,设用x单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数f(x).</p><p>(1)试规定f(0)的值,并解释其实际意义;</p><p>(2)试根据假定写出函数f(x)应该满足的条件和具有的性质;</p><p>(3)设f(x)= .</p><p>现有a(a0)单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次,试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.</p><p>解:(1)f(0)=1表示没有用水洗时,蔬菜上的农药量将保持原样.</p><p>(2)函数f(x)应满足的条件和具有的性质是:f(0)=1,f(1)= ,在[0,+)上f(x)单调递减,且01.</p><p>(3)设仅清洗一次,残留的农药量为f1= .</p><p>清洗两次后,残留的农药量为f2=[ .</p><p>f1-f2= .</p><p>于是,当a2 时,f1f2.</p><p>当a=2 时,f1=f2.</p><p>当02 时,f1f2.</p><p>因此,当a2 时,清洗两次后残留的农药量较少;当a=2 时,两种清洗方法具有相同的效果;当02 时,一次清洗残留的农药量较少.</p><p>拓展应用 跳一跳,够得着!</p><p>14.已知正方形ABCD的边长为4,动点P从B点开始沿折线BCDA向A点运动.设点P动运的路程为x,△ABP的面积为S,则函数S=f(x)的图象是下图中的( )</p><p>答案:D</p><p>解析:f(x)= 故选D.</p><p>15.从盛满20升纯酒精的容器里倒出1升,然后用水填满,再倒出1升混合溶液后又用水填满,这样继续进行,如果倒第k(k1)次时共倒出纯酒精x升,倒第k+1次时共倒出纯酒精f(x)升,则f(x)的函数表达式为( )</p><p>A.f(x)= x B.f(x)= x+1</p><p>C.f(x)= D.f(x)= +1</p><p>答案:B</p><p>解析:f(x)=x+ 1=1+ x.</p><p>16.如图,函数的图象由两条射线及抛物线的一部分组成,求函数的解析式.</p><p>解:设左侧的射线对应的解析式为y=kx+b(x1),由点(1,1)、(0,2)在射线上得 解得k=-1,b=2.</p><p>左侧射线对应的函数解析式为y=-x+2(x1).</p><p>同理,右侧射线的解析式为y=x-2(x3).</p><p>设中间抛物线对应的二次函数解析式为y=a(x-2)2+2(13,a0),</p><p>由点(1,1)在抛物线上可得1=a+2,解得a=-1,则抛物线对应的函数解析式为y=-x2+4x-2(13).</p><p>综上,可知函数的解析式可写为</p><p>y=</p>
页:
[1]