meili 发表于 2022-10-14 16:09:48

高中数学知识点:直线和圆的方程

<p>一、证一、概述</p><p>在知识点圆的方程中介绍了圆的概念,以及直线与圆的位置关系。</p><p>在初一数学中就有学习过直线方程的知识点,应该清楚,一元一次方程与直线方程的关系。</p><p>二、直线方程</p><p>1.直线的倾斜角:一条直线向上的方向与x轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是[0,180)</p><p>注:</p><p>①当倾斜角等于90时,直线l垂直于x轴,它的斜率不存在.</p><p>②每一条直线都存在惟一的倾斜角,除与x轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.</p><p>2.直线方程的几种形式:点斜式、截距式、两点式、斜切式.</p><p>三、圆的方程</p><p>1.⑴曲线与方程:在直角坐标系中,如果某曲线C上的与一个二元方程f(x,y)=0的实数建立了如下关系:</p><p>①曲线上的点的坐标都是这个方程的解.</p><p>②以这个方程的解为坐标的点都是曲线上的点.</p><p>那么这个方程叫做曲线方程;这条曲线叫做方程的曲线(图形).</p><p>⑵曲线和方程的关系,实质上是曲线上任一点M(x,y)其坐标与方程f(x,y)=0的一种关系,曲线上任一点(x,y)是方程f(x,y)=0的解;反过来,满足方程f(x,y)=0的解所对应的点是曲线上的点.</p><p>注:如果曲线C的方程是f(x,y)=0,那么点P0(x0,y)线C上的充要条件是f(x0,y0)=01.提出反证法:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.</p><p>2.证明基本步骤:假设原命题的结论不成立从假设出发,经推理论证得到矛盾矛盾的原因是假设不成立,从而原命题的结论成立</p><p>3.应用关键:在正确的推理下得出矛盾(与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等).</p><p>4.方法实质:反证法是利用互为逆否的命题具有等价性来进行证明的,即由一个命题与其逆否命题同真假,通过证明一个命题的逆否命题的正确,从而肯定原命题真实.</p>
页: [1]
查看完整版本: 高中数学知识点:直线和圆的方程