meili 发表于 2022-10-14 16:09:36

平面图形及其位置关系测试卷

<p>第四章平面图形及其位置关系测试卷</p><p>一、选择题(共13小题,每小题4分,满分52分)</p><p>1、如图,以O为端点的射线有()条.</p><p>A、3 B、4</p><p>C、5 D、6</p><p>2、下列说法错误的是()</p><p>A、不相交的两条直线叫做平行线 B、直线外一点与直线上各点连接的所有线段中,垂线段最短</p><p>C、平行于同一条直线的两条直线平行 D、平面内,过一点有且只有一条直线与已知直线垂直</p><p>3、一个钝角与一个锐角的差是()</p><p>A、锐角 B、钝角</p><p>C、直角 D、不能确定</p><p>4、下列说法正确的是()</p><p>A、角的边越长,角越大 B、在ABC一边的延长线上取一点D</p><p>C、ABC+DBC D、以上都不对</p><p>5、下列说法中正确的是()</p><p>A、角是由两条射线组成的图形 B、一条射线就是一个周角</p><p>C、两条直线相交,只有一个交点 D、如果线段AB=BC,那么B叫做线段AB的中点</p><p>6、同一平面内互不重合的三条直线的交点的个数是()</p><p>A、可能是0个,1个,2个 B、可能是0个,2个,3个</p><p>C、可能是0个,1个,2个或3个 D、可能是1个可3个</p><p>7、下列说法中,正确的有()</p><p>①过两点有且只有一条直线;②连接两点的线段叫做两点的距离;③两点之间,线段最短;④若AB=BC,则点B是线段AC的中点.</p><p>A、1个 B、2个</p><p>C、3个 D、4个</p><p>8、钟表上12时15分钟时,时针与分针的夹角为()</p><p>A、90 B、82.5</p><p>C、67.5 D、60</p><p>9、按下列线段长度,可以确定点A、B、C不在同一条直线上的是()</p><p>A、AB=8cm,BC=19cm,AC=27cm B、AB=10cm,BC=9cm,AC=18cm</p><p>C、AB=11cm,BC=21cm,AC=10cm D、AB=30cm,BC=12cm,AC=18cm</p><p>10、下列说法中,正确的个数有()</p><p>①两条不相交的直线叫做平行线;②两条直线相交所成的四个角相等,则这两条直线互相垂直;③经过一点有且只有一条直线与已知直线平行;④如果直线a∥b,a∥c,则b∥c.</p><p>A、1个 B、2个</p><p>C、3个 D、4个</p><p>11、下图中表示ABC的图是()</p><p>A、 B、</p><p>C、 D、</p><p>12、下列说法中正确的个数为()</p><p>①不相交的两条直线叫做平行线</p><p>②平面内,过一点有且只有一条直线与已知直线垂直</p><p>③平行于同一条直线的两条直线互相平行</p><p>④在同一平面内,两条直线不是平行就是相交</p><p>A、1个 B、2个</p><p>C、3个 D、4个</p><p>13、1和2为锐角,则2满足()</p><p>A、0<2<90 B、0<2<180</p><p>C、2<90 D、90<2<180</p><p>二、填空题(共5小题,每小题5分,满分25分)</p><p>14、如图,点A、B、C、D在直线l上.(1)AC= ﹣CD;AB+ +CD=AD;(2)如图共有 条线段,共有 条射线,以点C为端点的射线是 .</p><p>15、用三种方法表示如图的角: .</p><p>16、将一张正方形的纸片,按如图所示对折两次,相邻两条折痕(虚线)间的夹角为 度.</p><p>17、如图,OB,OC是AOD的任意两条射线,OM平分AOB,ON平分COD,若MON=,BOC=,则表示AOD的代数式是AOD= .</p><p>18、如图,AOD=AOC+ =DOB+ .</p><p>三、解答题(共3小题,满分23分)</p><p>19、如图,M是线段AC的中点,N是线段BC的中点.</p><p>(1)如果AC=8cm,BC=6cm,求MN的长.</p><p>(2)如果AM=5cm,CN=2cm,求线段AB的长.</p><p>20、如图,污水处理厂要把处理过的水引入排水沟PQ,应如何铺设排水管道,才能用料最省?试画出铺设管道的路线,并说明理由.</p><p>21、如图,直线AB、CD、EF都经过点O,且ABCD,COE=35,求DOF、BOF的度数.</p><p>答案及解析:</p><p>一、选择题(共13小题,每小题4分,满分52分)</p><p>1、如图,以O为端点的射线有()条.</p><p>A、3 B、4</p><p>C、5 D、6</p><p>考点:直线、射线、线段。</p><p>专题:常规题型。</p><p>分析:根据射线的定义可得,一个顶点的每一个方向对应一条射线,由此可得出答案.</p><p>解答:解:由射线的定义得:有射线,OB(OA)、OC、OD、OE,共4条.</p><p>故选B.</p><p>点评:本题考查了射线的知识,难度不大,注意掌握射线的定义是关键.</p><p>2、下列说法错误的是()</p><p>A、不相交的两条直线叫做平行线 B、直线外一点与直线上各点连接的所有线段中,垂线段最短</p><p>C、平行于同一条直线的两条直线平行 D、平面内,过一点有且只有一条直线与已知直线垂直</p><p>考点:平行线;垂线;垂线段最短。</p><p>分析:根据平行线和垂线的定义进行逐一判断即可.</p><p>解答:解:A、错误,在同一平面内不相交的两条直线叫做平行线;</p><p>B、正确,符合垂线段的定义;</p><p>C、正确,是平行线的传递性;</p><p>D、正确,符合垂线的性质.</p><p>故选A.</p><p>点评:本题考查的是平行线的定义、垂线的定义及性质,比较简单.</p><p>3、一个钝角与一个锐角的差是()</p><p>A、锐角 B、钝角</p><p>C、直角 D、不能确定</p><p>考点:角的计算。</p><p>分析:本题是对钝角和锐角的取值的考查.</p><p>解答:解:一个钝角与一个锐角的差可能是锐角、直角也可能是钝角.</p><p>故选D.</p><p>点评:注意角的取值范围.可举例求证推出结果.</p><p>4、下列说法正确的是()</p><p>A、角的边越长,角越大 B、在ABC一边的延长线上取一点D</p><p>C、ABC+DBC D、以上都不对</p><p>考点:角的概念。</p><p>分析:答题时首先理解角的概念,然后对各选项进行判断.</p><p>解答:解:角的大小与边长无关,故A错误,</p><p>在ABC一边的延长线上取一点D,角的一边是射线,故B错误,</p><p>ABC+DBC,B还可能等于ABC或DBC,故C错误,</p><p>故选D.</p><p>点评:本题主要考查角的概念,不是很难.</p><p>5、下列说法中正确的是()</p><p>A、角是由两条射线组成的图形 B、一条射线就是一个周角</p><p>C、两条直线相交,只有一个交点 D、如果线段AB=BC,那么B叫做线段AB的中点</p><p>考点:直线、射线、线段;命题与定理。</p><p>专题:常规题型。</p><p>分析:需要明确角、周角、线段中点的概念及直线的性质,利用这些知识逐一判断.</p><p>解答:解:A、两条射线必须有公共端点,故本选项错误;</p><p>B、周角的特点是两条边重合成射线.但不能说成周角是一条射线,故本选项错误;</p><p>C、两条直线相交,只有一个交点,故本选项正确;</p><p>D、只有当点B在线段AC上,且AB=BC时,点B才是线段AB的中点,故本选项错误.</p><p>故选C.</p><p>点评:本题考查直线、线段、射线的知识,属于基础题,注意掌握(1)角的两个基本元素中,边是两条射线,顶点是这两条射线的公共端点.(2)在只用几何语言表述而没有图形的情况下,要注意考虑图形的不同情形.</p><p>6、同一平面内互不重合的三条直线的交点的个数是()</p><p>A、可能是0个,1个,2个 B、可能是0个,2个,3个</p><p>C、可能是0个,1个,2个或3个 D、可能是1个可3个</p><p>考点:直线、射线、线段。</p><p>分析:在同一平面内,两条直线的位置关系有两种,平行和相交,三条直线互相平行无交点,两条直线平行,第三条直线与它相交,有2个交点,三条直线两两相交,最多有3个交点,最少有1个交点.</p><p>解答:解: ,故选C.</p><p>点评:本题考查了直线的交点个数问题.</p><p>7、下列说法中,正确的有()</p><p>①过两点有且只有一条直线;②连接两点的线段叫做两点的距离;③两点之间,线段最短;④若AB=BC,则点B是线段AC的中点.</p><p>A、1个 B、2个</p><p>C、3个 D、4个</p><p>考点:直线的性质:两点确定一条直线。</p><p>分析:根据概念利用排除法求解.</p><p>解答:解:①是公理,正确;</p><p>②连接两点的线段的长度叫做两点的距离,错误;</p><p>③是公理,正确;</p><p>④点B也可以在AC外,错误;</p><p>共2个正确.</p><p>故选B.</p><p>点评:此题考查较细致,如②中考查了两点间的距离是“连接两点的线段”还是“连接两点的线段的长度”,要注意.</p><p>相关链接:</p><p>直线:是点在空间内沿相同或相反方向运动的轨迹,向两个方向无限延伸.</p><p>公理:两点确定一条直线.</p><p>线段:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点.</p><p>线段有如下性质:两点之间线段最短.</p><p>两点间的距离:连接两点间线段的长度叫做这两点间的距离.</p><p>射线:直线上的一点和它一旁的部分所组成的图形称为射线,可向一方无限延伸.</p><p>8、钟表上12时15分钟时,时针与分针的夹角为()</p><p>A、90 B、82.5</p><p>C、67.5 D、60</p><p>考点:钟面角。</p><p>专题:计算题。</p><p>分析:钟表里,每一大格所对的圆心角是30,每一小格所对的圆心角是6,根据这个关系,画图计算.</p><p>解答:解:∵时针在钟面上每分钟转0.5,分针每分钟转6,</p><p>钟表上12时15分钟时,时针与分针的夹角可以看成时针转过12时0.515=7.5,分针在数字3上.</p><p>∵钟表12个数字,每相邻两个数字之间的夹角为30,</p><p>12时15分钟时分针与时针的夹角90﹣7.5=82.5.</p><p>故选B.</p><p>点评:本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1时针转动( ),并且利用起点时间时针和分针的位置关系建立角的图形.</p><p>9、按下列线段长度,可以确定点A、B、C不在同一条直线上的是()</p><p>A、AB=8cm,BC=19cm,AC=27cm B、AB=10cm,BC=9cm,AC=18cm</p><p>C、AB=11cm,BC=21cm,AC=10cm D、AB=30cm,BC=12cm,AC=18cm</p><p>考点:比较线段的长短。</p><p>分析:若A、B、C在同一条直线上,线段AB、BC、AC间有等量关系.</p><p>解答:解:A、B、D选项中AB、BC、AC间有等量关系,</p><p>B选项中AB、BC、AC间没有等量关系,</p><p>故选B.</p><p>点评:本题主要考查直线、线段、射线的知识点,比较简单.</p><p>10、下列说法中,正确的个数有()</p><p>①两条不相交的直线叫做平行线;②两条直线相交所成的四个角相等,则这两条直线互相垂直;③经过一点有且只有一条直线与已知直线平行;④如果直线a∥b,a∥c,则b∥c.</p><p>A、1个 B、2个</p><p>C、3个 D、4个</p><p>考点:平行线;垂线;平行公理及推论。</p><p>分析:本题可从平行线的基本性质和垂线的定义,对选项进行分析,求得答案.</p><p>解答:解:①两条不相交的直线叫做平行线是在同一平面内才可以成立的,故错误.</p><p>②两条直线相交所成的四个角相等,则这两条直线互相垂直是正确的,四个角相等为90.</p><p>③经过直线外一点有且只有一条直线与已知直线平行,故错误.</p><p>④如果直线a∥b,a∥c,则b∥c是正确的.</p><p>故答案为:B.</p><p>点评:对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.</p><p>11、下图中表示ABC的图是()</p><p>A、 B、</p><p>C、 D、</p><p>考点:角的概念。</p><p>分析:根据角的概念,对选项进行一一分析,排除错误答案.</p><p>解答:解:A、用三个大写字母表示角,表示角顶点的字母在中间,应为CAB,故错误;</p><p>B、角是由有公共的端点的两条射线组成的图形,故错误;</p><p>C、用三个大写字母表示角,表示角顶点的字母在中间,应为ABC,故正确;</p><p>D、用三个大写字母表示角,表示角顶点的字母在中间,应为ACD,故错误.</p><p>故选C.</p><p>点评:角的两个基本元素中,边是两条射线,顶点是这两条射线的公共端点.解题时要善于排除一些似是而非的说法的干扰,选出能准确描述“角”的说法.用三个大写字母表示角,表示角顶点的字母在中间.</p><p>12、下列说法中正确的个数为()</p><p>①不相交的两条直线叫做平行线</p><p>②平面内,过一点有且只有一条直线与已知直线垂直</p><p>③平行于同一条直线的两条直线互相平行</p><p>④在同一平面内,两条直线不是平行就是相交</p><p>A、1个 B、2个</p><p>C、3个 D、4个</p><p>考点:平行线;垂线。</p><p>分析:本题从平行线的定义及平行公理入手,对选项逐一分析即可.</p><p>解答:解:①不相交的两条直线叫做平行线必须是在同一个平面内才能成立,故错误.</p><p>②平面内,过一点有且只有一条直线与已知直线垂直是正确的.</p><p>③平行于同一条直线的两条直线互相平行,故正确.</p><p>④在同一平面内,两条直线不是平行就是相交是正确的.</p><p>故答案为C.</p><p>点评:本题考查平行线的定义及平行公理,需熟练掌握.</p><p>13、1和2为锐角,则2满足()</p><p>A、0<2<90 B、0<2<180</p><p>C、2<90 D、90<2<180</p><p>考点:角的计算。</p><p>专题:计算题。</p><p>分析:由于1和2为锐角,那么有0<1<90,0<2<90,在利用不等式的性质1,可得0<2<180.</p><p>解答:解:∵1和2为锐角,</p><p>0<1<90,0<2<90,</p><p>0<2<180,</p><p>故选B.</p><p>点评:本题考查了锐角的取值范围和不等式的性质</p><p>二、填空题(共5小题,每小题5分,满分25分)</p><p>14、如图,点A、B、C、D在直线l上.(1)AC=AD﹣CD;AB+BC+CD=AD;(2)如图共有6条线段,共有8条射线,以点C为端点的射线是CA、CD.</p><p>考点:直线、射线、线段。</p><p>专题:计算题。</p><p>分析:(1)线段也可以相减,移项后结合图形即可得出答案.</p><p>(2)根据线段及射线的定义结合图形即可的出答案.</p><p>解答:解:(1)由图形得:AC=AD﹣CD,AB+BC+CD=AD;</p><p>(2)线段有:AB,AC,AD,BC,BD,CD,共6条;</p><p>直线上每个点对应两条射线,射线共有8条,以点C为端点的射线是CA,CD.</p><p>故答案为:AD,BC;6,8,CA,CD.</p><p>点评:本题考查射线及线段的知识,属于基础题,掌握基本概念是关键.</p><p>15、用三种方法表示如图的角:C,1,ACB.</p><p>考点:角的概念。</p><p>分析:角的表示方法有:①一个大写字母;②三个大写字母;③阿拉伯数字;④希腊字母.</p><p>解答:解:图中的角可表示为:C,1,ACB.</p><p>点评:本题考查了角的表示方法,是基础知识,比较简单.</p><p>16、将一张正方形的纸片,按如图所示对折两次,相邻两条折痕(虚线)间的夹角为22.5度.</p><p>考点:翻折变换(折叠问题)。</p><p>分析:正方形的纸片,按图所示对折两次,两条折痕(虚线)间的夹角为直角的 .</p><p>解答:解:根据题意可得相邻两条折痕(虚线)间的夹角为904=22.5度.</p><p>点评:本题考查了翻折变换和正方形的性质.</p><p>17、如图,OB,OC是AOD的任意两条射线,OM平分AOB,ON平分COD,若MON=,BOC=,则表示AOD的代数式是AOD=2﹣.</p><p>考点:角的计算;列代数式;角平分线的定义。</p><p>分析:由角平分线的定义可得2,4,又有MON与BOC的大小,进而可求解AOD的大小.</p><p>解答:解:如图,</p><p>∵OM平分AOB,ON平分COD,2,4,</p><p>又MON=,BOC=,3=﹣,</p><p>AOD=22+2BOC=2(﹣)+=2﹣.</p><p>故答案为2﹣.</p><p>点评:熟练掌握角平分线的性质及角的比较运算.</p><p>18、如图,AOD=AOC+COD=DOB+AOB.</p><p>考点:角的计算。</p><p>专题:计算题。</p><p>分析:如果一条射线在一个角的内部,那么射线所分成的两个小角之和等于这个大角.</p><p>解答:解:如右图所示,</p><p>∵AOC+COD=AOD,BOD+AOB=AOD,</p><p>AOD=AOC+COD=BOD+AOB,</p><p>故答案是COD,AOB.</p><p>点评:本题考查了角的计算.</p><p>三、解答题(共3小题,满分23分)</p><p>19、如图,M是线段AC的中点,N是线段BC的中点.</p><p>(1)如果AC=8cm,BC=6cm,求MN的长.</p><p>(2)如果AM=5cm,CN=2cm,求线段AB的长.</p><p>考点:两点间的距离。</p><p>专题:常规题型。</p><p>分析:(1)因为M是AC的中点,N是BC的中点,则MC= AC,CN= BC,故MN=MC+CN可求;</p><p>(2)根据中点的概念,分别求出AC、BC的长,然后求出线段AB.</p><p>解答:解:(1)∵M是AC的中点,N是BC的中点,</p><p>MN=MC+CN= AC+ BC= AB=7cm.</p><p>则MN=7cm.</p><p>(2)∵M是线段AC的中点,N是线段BC的中点,</p><p>若AM=5cm,CN=2cm,</p><p>AB=AC+BC=10+4=14cm.</p><p>点评:本题主要考查两点间的距离的知识点,能够根据中点的概念,用几何式子表示线段的关系,还要注意线段的和差表示方法.</p><p>20、如图,污水处理厂要把处理过的水引入排水沟PQ,应如何铺设排水管道,才能用料最省?试画出铺设管道的路线,并说明理由.</p><p>考点:轴对称-最短路线问题。</p><p>分析:可过点M作MNPQ,沿MN铺设排水管道,才能用料最省</p><p>解答:解:如图因为点到直线间的距离垂线段最短.</p><p>点评:熟练掌握最短路线的问题,理解点到直线的线段中,垂线段最短.</p><p>21、如图,直线AB、CD、EF都经过点O,且ABCD,COE=35,求DOF、BOF的度数.</p><p>考点:垂线;对顶角、邻补角。</p><p>专题:计算题。</p><p>分析:根据对顶角相等得到DOF=COE,又BOF=BOD+DOF,代入数据计算即可.</p><p>解答:解:如图,∵COE=35,</p><p>DOF=COE=35,</p><p>∵ABCD,</p><p>BOD=90,</p><p>BOF=BOD+DOF,</p><p>=90+35</p><p>=125.</p><p>点评:本题主要利用对顶角相等的性质及垂线的定义求解,准确识别图形也是解题的关键之一.</p>
页: [1]
查看完整版本: 平面图形及其位置关系测试卷