meili 发表于 2022-10-14 16:08:58

2023年全国初中数学竞赛试题及答案

<p>2023年全国初中数学竞赛试题</p><p>考试时间 2023年4月2日上午 9∶30-11∶30 满分120分</p><p>一、选择题(共5小题,每小题6分,满分30分。以下每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的。请将正确选项的代号填入题后的括号里。不填、多填或错填均得0分)</p><p>1.在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪.刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是( )</p><p>(A)36 (B)37 (C)55 (D)90</p><p>2.已知,,且=8,则a的值等于( )</p><p>(A)-5 (B)5 (C)-9 (D)9</p><p>3.Rt△ABC的三个顶点A,B,C均在抛物线上,并且斜边AB平行于x轴.若斜边上的高为h,则( )</p><p>(A)h (B)h=1 (C)1h (D)h2</p><p>4.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是( )</p><p>(A)2023 (B)2023 (C)2023 (D)2023</p><p>5.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连结DP,交AC于点Q.若QP=QO,则的值为( )</p><p>(A)</p><p>(B)</p><p>(C)</p><p>(D)</p><p>二、填空题 (共5小题,每小题6分,满分30分)</p><p>6.已知a,b,c为整数,且a+b=2023,c-a=2023.若a,则a+b+c的最大值为 .</p><p>7.如图,面积为的正方形DEFG内接于</p><p>面积为1的正三角形ABC,其中a,b,c为整数,</p><p>且b不能被任何质数的平方整除,则的值</p><p>等于 .</p><p>8.正五边形广场ABCDE的周长为2023米.甲、乙两人分别从A、C两点同时出发,沿A→B→C→D→E→A→…方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分.那么出发后经过 分钟,甲、乙两人第一次行走在同一条边上.</p><p>9.已知0a1,且满足,则的值等于</p><p>.(表示不超过x的最大整数)</p><p>10.小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码.小明发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍,则小明家原来的电话号码是 .</p><p>三、解答题(共4题,每小题15分,满分60分)</p><p>11.已知,,为互质的正整数(即,是正整数,且它们的最大公约数为1),且≤8,.</p><p>(1) 试写出一个满足条件的x;</p><p>(2) 求所有满足条件的x.</p><p>12.设,,为互不相等的实数,且满足关系式</p><p> ①</p><p> ②</p><p>求a的取值范围.</p><p>13.如图,点P为⊙O外一点,过点P作⊙O的两条切线,切点分别为A,B.过点A作PB的平行线,交⊙O于点C.连结PC,交⊙O于点E;连结AE,并延长AE交PB于点K.求证:PE·AC=CE·KB.</p><p>14.10个学生参加n个课外小组,每一个小组至多5个人,每两个学生至少参加某一个小组,任意两个课外小组,至少可以找到两个学生,他们都不在这两个课外小组中.求n的最小值.</p><p>2023年全国初中数学竞赛试题参考答案</p><p>一、选择题(共5小题,每小题6分,满分30分。以下每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的。请将正确选项的代号填入题后的括号里。不填、多填或错填均得0分)</p><p>1.在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪.刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是( )</p><p>(A)36 (B)37 (C)55 (D)90</p><p>答:C.</p><p>解:因为4和9的最小公倍数为36,19+36=55,所以第二次同时经过这两种设施的千米数是在55千米处.</p><p>故选C.</p><p>2.已知,,且=8,则a的值等于( )</p><p>(A)-5 (B)5 (C)-9 (D)9</p><p>答:C.</p><p>解:由已知可得,.又</p><p>=8,所以 解得a=-9</p><p>故选C.</p><p>3.Rt△ABC的三个顶点A,B,C均在抛物线上,并且斜边AB平行于x轴.若斜边上的高为h,则( )</p><p>(A)h (B)h=1 (C)1h (D)h2</p><p>答:B.</p><p>解:设点A的坐标为(a,a2),点C的坐标为(c,c2)(|c||a|),则点B的坐标为</p><p>(-a,a2),由勾股定理,得,</p><p>, </p><p>所以 .</p><p>由于,所以a2-c2=1,故斜边AB上高h= a2-c2=1</p><p>故选B.</p><p>4.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是( )</p><p>(A)2023 (B)2023 (C)2023 (D)2023</p><p>答:B.</p><p>解:根据题意,用剪刀沿不过顶点的直线剪成两部分时,每剪开一次,使得各部分的内角和增加360°.于是,剪过k次后,可得(k+1)个多边形,这些多边形的内角和为(k+1)×360°.</p><p>因为这(k+1)个多边形中有34个六十二边形,它们的内角和为34×(62-2)×180°=34×60×180°,其余多边形有(k+1)-34= k-33(个),而这些多边形的内角和不少于(k-33) ×180°.所以(k+1)×360°≥34×60×180°+(k-33)×180°,解得k≥2023.</p><p>当我们按如下方式剪2023刀时,可以得到符合条件的结论.先从正方形上剪下1个三角形,得到1个三角形和1个五边形;再在五边形上剪下1个三角形,得到2个三角形和1个六边形……如此下去,剪了58刀后,得到58个三角形和1个六十二边形.再取33个三角形,在每个三角形上剪一刀,又可得到33个三角形和33个四边形,对这33个四边形,按上述正方形的剪法,再各剪58刀,便34个六十二边形和33×58个三角形.于是共剪了</p><p>58+33+33×58=2023(刀).</p><p>故选B.</p><p>5.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连结DP,交AC于点Q.若QP=QO,则的值为( )</p><p>(A)</p><p>(B)</p><p>(C)</p><p>(D)</p><p>答:D.</p><p>解:如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m,</p><p>QA=r-m.</p><p>在⊙O中,根据相交弦定理,得QA·QC=QP·QD.</p><p>即 (r-m)(r+m)=m·QD ,所以 QD=.</p><p>连结DO,由勾股定理,得QD2=DO2+QO2,</p><p>即 , 解得</p><p>所以, </p><p>故选D.</p><p>二、填空题 (共5小题,每小题6分,满分30分)</p><p>6.已知a,b,c为整数,且a+b=2023,c-a=2023.若a,则a+b+c的最大值为 .</p><p>答:2023.</p><p>解:由,,得 .</p><p>因为,a,a为整数,所以,a的最大值为2023.</p><p>于是,a+b+c的最大值为2023.</p><p>7.如图,面积为的正方形DEFG内接于</p><p>面积为1的正三角形ABC,其中a,b,c为整数,</p><p>且b不能被任何质数的平方整除,则的值</p><p>等于 .</p><p>答:.</p><p>解:设正方形DEFG的边长为x,正三角形ABC的边长为m,则,</p><p>由△ADG∽△ABC,可得, 解得</p><p>于是 ,</p><p>由题意,,,,所以.</p><p>8.正五边形广场ABCDE的周长为2023米.甲、乙两人分别从A、C两点同时出发,沿A→B→C→D→E→A→…方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分.那么出发后经过 分钟,甲、乙两人第一次行走在同一条边上.</p><p>答:104.</p><p>解:设甲走完x条边时,甲、乙两人第一次开始行走在同一条边上,此时甲走了400x米,乙走了46×=368x米.于是368(x-1)+800-400(x-1)400,</p><p>所以,12.5≤x13.5. 故x=13,此时.</p><p>9.已知0a1,且满足,则的值等于 .(表示不超过x的最大整数)</p><p>答:6.</p><p>解:因为0,所以,,…,等于0或1.由题设知,其中有18个等于1,所以</p><p>=0,=1,</p><p>所以 ,1≤<2.</p><p>故18≤30a<19,于是6≤10 a<,所以=6.</p><p>10.小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码.小明发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍,则小明家原来的电话号码是 .</p><p>答:202300.</p><p>解:设原来电话号码的六位数为,则经过两次升位后电话号码的八位数为</p><p>.根据题意,有81×=.</p><p>记,于是</p><p>,</p><p>解得x=2023×(208-71a) .</p><p>因为0≤x<,所以0≤2023×(208-71a)<,故≤.</p><p>因为a为整数,所以a=2.于是x=2023×(208-71×2)=20230.</p><p>所以,小明家原来的电话号码为202300.</p><p>三、解答题(共4题,每小题15分,满分60分)</p><p>11.已知,,为互质的正整数(即,是正整数,且它们的最大公约数为1),且≤8,.</p><p>(1)试写出一个满足条件的x;</p><p>(2)求所有满足条件的x.</p><p>解:(1)满足条件. ……………5分</p><p>(2)因为,,为互质的正整数,且≤8,所以</p><p>, 即 .</p><p>当a=1时,,这样的正整数不存在.</p><p>当a=2时,,故=1,此时.</p><p>当a=3时,,故=2,此时.</p><p>当a=4时,,与互质的正整数不存在.</p><p>当a=5时,,故=3,此时.</p><p>当a=6时,,与互质的正整数不存在.</p><p>当a=7时,,故=3,4,5此时,,.</p><p>当a=8时,,故=5,此时</p><p>所以,满足条件的所有分数为,,,,,,.………………15分</p><p>12.设,,为互不相等的实数,且满足关系式</p><p> ①</p><p> ②</p><p>求a的取值范围.</p><p>解法一:由①-2×②得,所以a-1.</p><p>当a-1时, =.………………10分</p><p>又当时,由①,②得 , ③</p><p> ④</p><p>将④两边平方,结合③得</p><p>化简得 , 故 ,</p><p>解得,或.</p><p>所以,a的取值范围为a-1且,.………………………15分</p><p>解法二:因为,,所以</p><p>,</p><p>所以 . 又,所以,为一元二次方程</p><p> ⑤</p><p>的两个不相等实数根,故,所以a-1.</p><p>当a-1时, =.………………10分</p><p>另外,当时,由⑤式有 ,</p><p>即 或 ,解得,或.</p><p>当时,同理可得或.</p><p>所以,a的取值范围为a-1且,.………………………15分</p><p>13.如图,点P为⊙O外一点,过点P作⊙O的两条切线,切点分别为A,B.过点A作PB的平行线,交⊙O于点C.连结PC,交⊙O于点E;连结AE,并延长AE交PB于点K.求证:PE·AC=CE·KB.</p><p>证明:因为AC∥PB,所以∠KPE=∠ACE.又PA是⊙O的切线,</p><p>所以∠KAP=∠ACE,故∠KPE=∠KAP,于是</p><p>△KPE∽△KAP,</p><p>所以 , 即 .</p><p>由切割线定理得 </p><p>所以 . …………………………10分</p><p>因为AC∥PB,△KPE∽△ACE,于是</p><p> 故 ,</p><p>即 PE·AC=CE·KB. ………………………………15分</p><p>14.10个学生参加n个课外小组,每一个小组至多5个人,每两个学生至少参加某一个小组,任意两个课外小组,至少可以找到两个学生,他们都不在这两个课外小组中.求n的最小值.</p><p>解:设10个学生为,,…,,n个课外小组,,…,.</p><p>首先,每个学生至少参加两个课外小组.否则,若有一个学生只参加一个课外小组,设这个学生为,由于每两个学生至少在某一个小组内出现过,所以其它9个学生都与他在同一组出现,于是这一组就有10个人了,矛盾. ………………………………5分</p><p>若有一学生恰好参加两个课外小组,不妨设恰好参加,,由题设,对于这两组,至少有两个学生,他们没有参加这两组,于是他们与没有同过组,矛盾.</p><p>所以,每一个学生至少参加三个课外小组.于是n个课外小组,,…,的人数之和不小于3×10=30.</p><p>另一方面,每一课外小组的人数不超过5,所以n个课外小组,,…,的人数不超过5n, 故 5n≥30, 所以n≥6. ……………………………10分</p><p>下面构造一个例子说明n=6是可以的.</p><p>,,,</p><p>,,.</p><p>容易验证,这样的6个课外小组满足题设条件.</p><p>所以,n的最小值为6. ……………………………15分</p>
页: [1]
查看完整版本: 2023年全国初中数学竞赛试题及答案