meili 发表于 2022-10-14 16:02:38

高一数学指数与指数幂的运算练习题

<p>1.将532写为根式,则正确的是()</p><p>A.352B.35</p><p>C.532D.53</p><p>解析:选D.532=53.</p><p>2.根式1a1a(式中a>0)的分数指数幂形式为()</p><p>A.a-43B.a43</p><p>C.a-34D.a34</p><p>解析:选C.1a1a=a-1??a-1?12=a-32=(a-32)12=a-34.</p><p>3.?a-b?2+5?a-b?5的值是()</p><p>A.0B.2(a-b)</p><p>C.0或2(a-b)D.a-b</p><p>解析:选C.当a-b≥0时,</p><p>原式=a-b+a-b=2(a-b);</p><p>当a-b0时,原式=b-a+a-b=0.</p><p>4.计算:(π)0+2-2×(214)12=________.</p><p>解析:(π)0+2-2×(214)12=1+122×(94)12=1+14×32=118.</p><p>答案:118</p><p>1.下列各式正确的是()</p><p>A.?-3?2=-3B.4a4=a</p><p>C.22=2D.a0=1</p><p>解析:选C.根据根式的性质可知C正确.</p><p>4a4=|a|,a0=1条件为a≠0,故A,B,D错.</p><p>2.若(x-5)0有意义,则x的取值范围是()</p><p>A.x5B.x=5</p><p>C.x5D.x≠5</p><p>解析:选D.∵(x-5)0有意义,</p><p>∴x-5≠0,即x≠5.</p><p>3.若xy≠0,那么等式4x2y3=-2xyy成立的条件是()</p><p>A.x0,y0B.x0,y0</p><p>C.x0,y0D.x0,y0</p><p>解析:选C.由y可知y0,又∵x2=|x|,</p><p>∴当x0时,x2=-x.</p><p>4.计算?2n+1?2??12?2n+14n?8-2(n∈N*)的结果为()</p><p>A.164B.22n+5</p><p>C.2n2-2n+6D.(12)2n-7</p><p>解析:选D.?2n+1?2??12?2n+14n?8-2=22n+2?2-2n-1?22?n??23?-2=2023n-6=27-2n=(12)2n-7.</p><p>5.化简23-610-43+22得()</p><p>A.3+2B.2+3</p><p>C.1+22D.1+23</p><p>解析:选A.原式=23-610-4?2+1?</p><p>=23-622-42+?2?2=23-6?2-2?</p><p>=9+62+2=3+2</p><p>6.设a12-a-12=m,则a2+1a=()</p><p>A.m2-2B.2-m2</p><p>C.m2+2D.m2</p><p>解析:选C.将a12-a-12=m平方得(a12-a-12)2=m2,即a-2+a-1=m2,所以a+a-1=m2+2,即a+1a=m2+2?a2+1a=m2+2.</p><p>7.根式a-a化成分数指数幂是________.</p><p>解析:∵-a≥0,∴a≤0,</p><p>∴a-a=-?-a?2?-a?=-?-a?3=-(-a)32.</p><p>答案:-(-a)32</p><p>8.化简11+62+11-62=________.</p><p>解析:11+62+11-62=?3+2?2+?3-2?2=3+2+(3-2)=6.</p><p>答案:6</p><p>9.化简(3+2)2023?(3-2)2023=________.</p><p>解析:(3+2)2023?(3-2)2023</p><p>=[(3+2)(3-2)]2023?(3-2)</p><p>=20230?(3-2)=3-2.</p><p>答案:3-2</p><p>10.化简求值:</p><p>(1)0.064-13-(-18)0+2023+0.2023;</p><p>(2)a-1+b-1?ab?-1(a,b≠0).</p><p>解:(1)原式=(0.43)-13-1+(24)34+(0.52)12</p><p>=0.4-1-1+8+12</p><p>=52+7+12=10.</p><p>(2)原式=1a+1b1ab=a+bab1ab=a+b.</p><p>11.已知x+y=12,xy=9,且xy,求x12-y12x12+y12的值.</p><p>解:x12-y12x12+y12=?x+y?-2?xy?12x-y.</p><p>∵x+y=12,xy=9,</p><p>则有(x-y)2=(x+y)2-4xy=108.</p><p>又xy,∴x-y=-108=-63,</p><p>代入原式可得结果为-33.</p><p>12.已知a2n=2+1,求a3n+a-3nan+a-n的值.</p><p>解:设an=t>0,则t2=2+1,a3n+a-3nan+a-n=t3+t-3t+t-1</p><p>=?t+t-1??t2-1+t-2?t+t-1=t2-1+t-2</p><p>=2+1-1+12+1=22-1.</p>
页: [1]
查看完整版本: 高一数学指数与指数幂的运算练习题