meili 发表于 2022-10-14 16:02:06

2023初三年级数学上册期中自测试卷(含答案解析)

<p>2023初三年级数学上册期中自测试卷(含答案解析)</p><p>一、选择题:</p><p>1.三角形两边的长是3和4,第三边的长是方程 的根,则该三角形的周长为【】</p><p>A.14B.12C.12或14D.以上都不对</p><p>2.某市2023年国内生产总值(GDP)比2023年增长了12%,由于受到国际金融危机的影响,预计今年比2023年增长7%,若这两年GDP年平均增长率为x%,则x%满足的关系是【】</p><p>A.B.</p><p>C.D.</p><p>3.已知 是一元二次方程 的一个解,则 的值是【】</p><p>A.B.C.0D.0或</p><p>4.若关于 的一元二次方程 有两个不相等的实数根,则 的取值范围是【】</p><p>A、B、 且C、D、 且</p><p>5.在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是2023cm2,设金色纸边的宽为 cm,那么 满足的方程是【】</p><p>A.B.</p><p>C.D.</p><p>6.如图,在□ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程</p><p>的根,则□ABCD的周长为【】</p><p>A.B.C.D.</p><p>7.根据下列表格的对应值:</p><p>x 3.23 3.24 3.25 3.26</p><p>-0.06 -0.02 0.03 0.09</p><p>判断方程 (a≠0,a,b,c为常数)一个解x的范围是【】</p><p>A.3<x<3.23B.3.23<x<3.24C.3.24<x<3.25D.3.25 <x<3.26</p><p>8.若最简二次根式与3的被开方数相同,则x的值是【】</p><p>A、-2 B、5C、-2或5D、2或-5</p><p>9.设 是方程 的两个实数根,则 的值为【】A.2023 B.2023 C.2023 D.2023</p><p>10.定义:如果一元二次方程 满足 ,那么我们称这个方程为“凤凰”方程. 已知 是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是【】</p><p>A.B.C. D.</p><p>11. 关于 的方程 有实数根,则 的取值范围是【】</p><p>A. B. C. D. ﹥</p><p>12.商店将某型号空调先按原价提高40%,然后在广告中写上“大酬宾,八折优惠”,结果被工</p><p>商部门发现有欺诈行为,为此按每台所得利润的10倍处以2023元的罚款,则每台空调原价为【】</p><p>A. 2023元. B. 2023元. C. 2023元. D. 2023元.</p><p>二、填空题:</p><p>1.如果关于x的一元二次方程2x(kx-4)-x2+6=0没有实数根,那么k 的最小整数值是__________;</p><p>2.若规定两数a, b 通过“※”运算, 得到4ab, 即 a※b = 4ab , 例如 2※6 = 4×2×6 = 48.</p><p>若x ※x + 2 ※x -2※4 = 0,则x 的值为;</p><p>3.关于 的方程 有实数根,则整数 的最大值是;</p><p>4.若n( )是关于x的方程 的根,则m+n的值为;</p><p>5.若xy≠0,且x2-2x y-8y2=0,则 = ;</p><p>6.若 ,则 =;</p><p>7.已知a、b实数且满足(a2+b2)2-(a2+b2)-6=0,则a2+b2的值为;</p><p>8.已知 的值是10,则代数式 的值是;</p><p>9.已知关于 的方程 是一元二次方程,则 =__;</p><p>10.若方程 的两根为 、 ,则 的值为 ;</p><p>11.写出一个一元二次方程,使方程有一个根为1,并且二次项系数为1,;</p><p>12.已知关于x的一元二次方程 有两个不相等的实数根,则k的取值范围是.</p><p>三、用适当方法解下列方程:</p><p>(1) (配方法)(2)</p><p>(3)(4)</p><p>四、解答题:</p><p>1.已知关于x的方程x2-(2k+1)x+4(k-)=0</p><p>(1)判断方程根的情况;</p><p>(2)k为何值时,方程有两个相等的实数根,并求出此时方程的根.</p><p>2.已知关于x的一元二次方程 .</p><p>(1)若此方程有两个实数根,求实数k的取值范围;</p><p>(2)如果此方程的两个实数根为 、 ,且满足 ,求实数k的值.</p><p>3.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?</p><p>4.已知关于x的方程 .</p><p>(1)求证:方程恒有两个不相等的实数根;</p><p>(2)若此方程的一个根是3,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.</p><p>5.某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高0.5元,其销售量就减少10件,问应将每件售价定为多少元时,才能使每天利润为640元?</p><p>6.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形。.</p><p>(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?</p><p>(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.</p><p>7.如图直线l的解析式为y=-x+4,它与x轴、y轴分相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0t≤4)。</p><p>(1)求A、B两点的坐标;</p><p>(2)用含t的代数式表示△MON的面积S1;</p><p>(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S2;</p><p>?当2t≤4时,试探究S2与之间的函数关系;</p><p>?在直线m的运动过程中,当t为何值时,S2 为△OAB的面积的 ?</p><p>2023初三年级数学上册期中自测试卷(含答案解析)参考答案</p><p>一、选择题:</p><p>1、B2、D3、A4、B5、B6、A</p><p>7、C8、B9、C10、A11、C12、C</p><p>【解:设原价是x元,由题意得:(x+0.4x)×0.8-x=2023÷10,解得:x=2023】</p><p>二、填空题:</p><p>1、12、2或一43、84、一25、4或一26、</p><p>7、38、199、一210、一311、不唯一12、-2≤k<2.</p><p>【∵一元二次方程 有两个不相等的实数根,∴b2-4ac>0,且2k+4≥0,</p><p>则有 ,由①得:k<2,由②得:k≥-2,∴不等式组的解集为-2≤k<2,</p><p>则k的取值范围为-2≤k<2.】</p><p>三、用适当方法解下列方程:</p><p>(1)(2)</p><p>(3)(4)</p><p>四、解答题:</p><p>1、解:①∵△=(2k+1)2-4×1×4(k- )=4k2+4k+1-16k+8=4k2-12k+9=(2k-3)2≥0,</p><p>∴该方程有两个实根;</p><p>②若方程有两个相等的实数根,则△=b2-4ac=0,∴(2k-3)2=0,解得:k= ,</p><p>∴k= 时,方程有两个相等的实数根;把k= 时代入原式得:</p><p>x2-(2× +1)x+4( - )=0,x2-4x+4=0,解得:x=2;∴方程两根均为2.</p><p>2、解:(1)∵方程有两个实数根,∴△= ,即 ,</p><p>解得 ;</p><p>(2)由根与系数的关系可知: , ,</p><p>∵ ,即 ,∴ ,∴ ,∴ ,</p><p>或 .经检验: 不符合题意, 是方程的根.故 .</p><p>3、解:设每轮感染中平均每一台电脑会感染x台电脑,依题意得:1+x+(1+x)x=81,</p><p>整理得(1+x)2=81,则x+1=9或x+1=-9,解得x1=8,x2=-10(舍去),</p><p>∴(1+x)2+x(1+x)2=(1+x)3=(1+8)3=729>700.</p><p>答:每轮感染中平均每一台电脑会感染8台电脑,3轮感染后,被感染的电脑会超过700台.</p><p>4、解:(1)∵△=(m+2)2-4(2m-1)=(m-2)2+4,</p><p>∴在实数范围内,m无论取何值,(m-2)2+4≥4>0,即△>0.</p><p>∴关于x的方程x2-(m+2)x+(2m-1)=0恒有两个不相等的实数根.</p><p>(2)∵此方程的一个根是3,∴32-3×(m+2)+(2m-1)=0,解得,m=2.</p><p>则方程的另一根为:m+2-3=1.</p><p>①当该直角三角形的两直角边是1、3时,由勾股定理得斜边的长度为 ,</p><p>该直角三角形的周长为1+3+ =4+ ;</p><p>②当该直角三角形的直角边和斜边分别是1、3时,由勾股定理得该直角三角形的另一直角边为 ;则该直角三角形的周长为1+3+ =4+ .</p><p>5、解:设售价为x元,根据题意列方程得(x-8)(200- ×10)=640,</p><p>整理得:(x-8)(400-20x)=640,即x2-28x+192=0,</p><p>解得x1=12,x2=16.</p><p>故将每件售价定为12或16元时,才能使每天利润为640元.</p><p>又题意要求采取提高商品售价减少销售量的办法增加利润,</p><p>故应将商品的售价定为16元.</p><p>6、解:(1)设其中一个正方形的边长为xcm,则另一个正方形的边长为(5﹣x)cm,</p><p>依题意列方程得x2+(5﹣x)2=17,整理得:x2﹣5x+4=0,(x﹣4)(x﹣1)=0,</p><p>解方程得x1=1,x2=4,1×4=4cm,20﹣4=16cm;或4×4=16cm,20﹣16=4cm.</p><p>因此这段铁丝剪成两段后的长度分别是4cm、16cm;</p><p>(2)两个正方形的面积之和不可能等于12cm2.理由:</p><p>由(1)可知x2+(5﹣x)2=12,化简后得2 ﹣10x+13=0,∵△=(﹣10)2﹣4×2×13=﹣4<0,</p><p>∴方程无实数解;所以两个正方形的面积之和不可能等于12 .</p>
页: [1]
查看完整版本: 2023初三年级数学上册期中自测试卷(含答案解析)