宁津县中学2023初三数学上册期中试卷(含答案解析)
<p>宁津县中学2023初三数学上册期中试卷(含答案解析)</p><p>一、选择题(本大题共10小题,每小题3分,共30分)</p><p>1.关于x的一元二次方程(a2-1)x2+x-2=0是一元二次方程,则a满足()</p><p>A.a≠1 B.a≠-1</p><p>C.a≠±1 D.为任意实数</p><p>2.用配方法解方程x2-2x-5=0时,原方程应变形为()</p><p>A.(x+1)2=6 B.(x-1)2=6</p><p>C.(x+2)2=9 D.(x-2)2=9</p><p>3.若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则k的取值范围是()</p><p>A.k-1 B.k-1且k≠0</p><p>C.kD.k1且k≠0</p><p>4.若关于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1,则2023-a-b的值是()</p><p>A.2023B.2023</p><p>C.2023 D. 2023</p><p>5.方程x2-9+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()</p><p>A.12 B.12或15</p><p>C.15 D.不能确定</p><p>6.对于任意实数k,关于x的方程x2-2(k+1)x-k2+2k-1=0的根的情况为()</p><p>A.有两个相等的实数根</p><p>B.没有实数根</p><p>C.有两个不相等的实数根</p><p>D.无法确定</p><p>7.已知函数y=kx+b的图象如图21-1,则一元二次方程x2+x+k-1=0根的存在情况是()</p><p>A.没有实数根</p><p>B.有两个相等的实数根</p><p>C.有两个不相等的实数根</p><p>D.无法确定</p><p>8.已知实数a,b分别满足a2-6a+4=0,b2-6b+4=0,且a≠b,则ba+ab的值是()</p><p>A.7 B.-7 C.11 D.-11</p><p>9.如图21-2,在长为100 m,宽为80 m的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为2023 m2,则道路的宽应为多少米?设道路的宽为x m,则可列方程为()</p><p>A.100×80-100x-80x=2023</p><p>B.(100-x)(80-x)+x2=2023</p><p>C.(100-x)(80-x)=2023</p><p>D.100x+80x=356</p><p>10.图21-3是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()</p><p>图21-3</p><p>A.32 B.126 C.135 D.144</p><p>二、填空题(本大题共6小题,每小题4分,共24分)</p><p>11.一元二次方程x2-3=0的解为________________.</p><p>12.把一元二次方程(x-3)2=4化为一般形式为:________________,二次项为:________,一次项系数为:________,常数项为:________.</p><p>13.已知2是关于x的一元二次方程x2+4x-p=0的一个根,则该方程的另一个根是__________.</p><p>14.已知x1,x2是方程x2-2x-1=0的两个根,则1x1+1x2=__________.</p><p>15.若|b-1|+a-4=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是________.</p><p>16.一个长100 m,宽60 m的游泳池扩建成一个周长为600 m的大型水上游乐场,把游泳池的长增加x m,那么x等于多少时,水上游乐场的面积为20 000 m2?列出方程__________________________.</p><p>三、解答题(一)(本大题共3小题,每小题6分,共18分)</p><p>17.用公式法解方程:2x2-4x-5=0.</p><p>18.用配方法解方程:x2-4x+1=0.</p><p>19.用因式分解法解方程:(y-1)2+2y(1-y)=0.</p><p>四、解答题(二)(本大题共3小题,每小题7分,共21分)</p><p>20.若a,b,c是△ABC的三条边,且a2-6a+b2-10c+c2=8b-50,判断此三角形的形状.</p><p>21.如图21-4,在宽为20 m,长为32 m的矩形耕地上,修筑同样宽的三条道路(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570 m2,道路应为多宽?</p><p>22.在实数范围内定义一种新运算“ ”,其规则为:a b=a2-b2,根据这个规则:</p><p>(1)求4 3的值;</p><p>(2)求(x+2) 5=0中x的值.</p><p>五、解答题(三)(本大题共3小题,每小题9分,共27分)</p><p>23.已知:关于x的方程x2-2(m+1)x+m2=0.</p><p>(1)当m取何值时,方程有两个实数根?</p><p>(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.</p><p>24.已知下列n(n为正整数)个关于x的一元二次方程:</p><p>x2-1=0,</p><p>x2+x-2=0,</p><p>x2+2x-3=0,</p><p>…</p><p>x2+(n-1)x-n=0.</p><p>(1)请解上述4个一元二次方程;</p><p>(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.</p><p>25.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.</p><p>(1)现该商场要保证每天盈利2023元,同时又要顾客得到实惠,那么每千克应涨价多少元?</p><p>(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?</p><p>宁津县中学2023初三数学上册期中试卷(含答案解析)参考答案</p><p>1.C2.B3.B4.A5.C6.C7.C8.A9.C10.D</p><p>11.x=±312.x2-6x+5=0x2-2023.-6</p><p>14.-215.k≤4,且k≠0</p><p>16.(x+100)(200-x)=20 000</p><p>17.解:∵a=2,b=-4,c=-5,</p><p>∴b2-4ac=(-4)2-4×2×(-5)=560.</p><p>∴x=4±562×2=4±2 144.</p><p>∴x1=2+142,x2=2-142.</p><p>18.解:∵x2-4x+1=0,</p><p>∴x2-4x+4=4-1,即(x-2)2=3.</p><p>∴x1=2+3,x2=2-3.</p><p>19.解:∵(y-1)2+2y(1-y)=0,</p><p>∴(y-1)2-2y(y-1)=0.∴(y-1)(y-1-2y)=0.</p><p>∴y-1=0或y-1-2y=0.∴y1=1,y2=-1.</p><p>20.解:将a2-6a+b2-10c+c2=8b-50变形为a2-6a+9+b2-8b+16+c2-10c+25=0,</p><p>∴(a-3)2+(b-4)2+(c-5)2=0.</p><p>∴a-3=0,b-4=0,c-5=0.∴a=3,b=4,c=5.</p><p>∵32+42=52,∴△ABC为直角三角形.</p><p>21.解:设道路宽为x m,</p><p>(32-2x)(20-x)=570,</p><p>640-32x-40x+2x2=570,</p><p>x2-36x+35=0,</p><p>(x-1)(x-35)=0,</p><p>x1=1,x2=35(舍去).</p><p>答:道路应宽1 m.</p><p>22.解:(1)4△3=42-32=16-9=7.</p><p>(2)∵(x+2)△5=0,即(x+2)2-52=0,</p><p>∴x1=-7,x2=3.</p><p>23.解:(1)当Δ≥0时,方程有两个实数根,</p><p>∴[-2(m+1)]2-4m2=8m+4≥0.∴m≥-12.</p><p>(2)取m=0时,原方程可化为x2-2x=0,</p><p>解得x1=0,x2=2.(答案不唯一)</p><p>24.解:(1)x2-1=(x+1)(x-1)=0,∴x1=-1,x2=1.</p><p>x2+x-2=(x+2)(x-1)=0,∴x1=-2,x2=1.</p><p>x2+2x-3=(x+3)(x-1)=0,∴x1=-3,x2=1.</p><p>…</p><p>x2+(n-1)x-n=(x+n)(x-1)=0,∴x1=-n,x2=1.</p><p>(2)共同特点是:都有一个根为1;都有一个根为负整数;两个根都是整数根;两根之和等于一次项系数的相反数.</p><p>25.解:(1)设每千克应涨价x元,</p><p>则(10+x)(500-20x)=2023.</p><p>解得x=5或x=10.</p><p>为了使顾客得到实惠,所以x=5.</p><p>(2)设涨价x元时总利润为y,则</p><p>y=(10+x)(500-20x)</p><p>=-20x2+300x+2023=-20(x-7.5)2+2023</p><p>当x=7.5时,取得最大值,最大值为2023.</p><p>答:(1)要保证每天盈利2023元,同时又使顾客得到实惠,那么每千克应涨价5元.</p><p>(2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.</p>
页:
[1]